RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
  Emergency Medicine
  Internal Medicine
  Respiratory Medicine
   Asthma
   COPD
   Cystic Fibrosis
  Sexual Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Cystic Fibrosis Channel

subscribe to Cystic Fibrosis newsletter
Latest Research : Medicine : Respiratory Medicine : Cystic Fibrosis

   EMAIL   |   PRINT
How to design a better drug to treat cystic fibrosis

Sep 4, 2005 - 8:30:00 AM
"The chemical mechanisms directing chloride binding and transport are poorly understood. The mechanisms determining how sodium, potassium and calcium get across are much better known. We're trying to find out how chloride actually gets across so we will then be able to manipulate both the transport rates and selectivity."

 
[RxPG] John Tomich, a Kansas State University professor of biochemistry, spends much of his day thinking about how to design a better drug to treat cystic fibrosis.

A chronic and progressive disease, cystic fibrosis is usually diagnosed in childhood. It causes mucus to become thick, dry and sticky. The mucus builds up and clogs passages in the lungs, pancreas and other organs in the body.

There is no cure for cystic fibrosis. Management of the disease varies from person to person and generally focuses on treating respiratory and digestive problems to prevent infection and other complications. Treatment usually involves a combination of medications and home treatment methods, such as respiratory and nutritional therapies.

Tomich, along with colleagues Takeo Iwamoto, a K-State research assistant professor, and Shawnalea J. Frazier, senior in biochemistry, Haysville, have been working to understand how ions travel across cell membranes, specifically the anion part of sodium chloride.

Tomich presented a paper on the trios' findings, "Assessing The Contributions of H-Bonding Donors to Permeation Rates and Selectivity in Self-Assembling Peptides that Form Chloride Selective Pores," Aug. 28 at the Membrane Active, Synthetic Organic Compounds Symposium of the American Chemical Society's national meeting and exposition in Washington, D.C.

"What's kind of an honor about this is we were one of the few, purely biochemical research groups who are presenting in this symposium," Tomich said. "This is a section organized by organic chemists."

Tomich and his collaborators have used a series of single and double amino acid substitutions to modulate the activity of a channel forming peptide derived from the second transmembrane segment of the alpha subunit of the human spinal cord glycine receptor.

Tomich said chloride ions are hydrogen bond acceptors; consequently, it is hypothesized the hydroxyl function contributes strongly to ion throughput across and/or ion selectivity within the channel structures. Residue replacements in the peptide involving the 13th and 17th positions were designed to correlate hydrogen-bonding strength with selectivity and permeation rates. The hydrogen bonding strengths of the amino acid side-chains correlate directly with anion selectivity and inversely with transport rates for the anion.

According to Tomich, these results will help in optimizing these two counteracting channel properties.

"Your body knows how to separate these things all by itself," Tomich said. "Sodium is usually higher outside the cell, potassium is higher inside the cell and chloride, depending on the cell type, can be the same or different.

"The chemical mechanisms directing chloride binding and transport are poorly understood," he said. "The mechanisms determining how sodium, potassium and calcium get across are much better known. We're trying to find out how chloride actually gets across so we will then be able to manipulate both the transport rates and selectivity."

Tomich began working on this many years ago. Over the past 15 years, his lab has developed more than 200 sequences that showed varied ion transport activity in synthetic membranes, as well as cultured epithelial cells and animals. From all of that they can change virtually the way this ion channel assembles. Some of the compounds that he has designed work at very low concentrations but lack some of the chloride specificity that it once had. Their presentation discussed how the researchers back-designed the channel pore so it can be more specified for chloride.

"Our goal is to make a drug that would work efficiently and effectively at low doses," Tomich said. "We have some early designs that are highly selective for chloride, but you'd have to give them a lot of the compound to see the effect."



Publication: Membrane Active, Synthetic Organic Compounds Symposium of the American Chemical Society's national meeting and exposition in Washington, D.C., August 28, 2005
On the web: Kansas State University 

Advertise in this space for $10 per month. Contact us today.


Related Cystic Fibrosis News
Cystic fibrosis-related diabetes is due to functional abnormalities in beta cells
No evidence for inhaled corticosteroids efficacy in cystic fibrosis
Hcp1 plays a critical role in cystic fibrosis infection
Cystic fibrosis research could benefit from multi-functional sensing tool
Loss of CFTR-mediated fluid secretion is the culprit in cystic fibrosis
New treatment for cystic fibrosis patients
Genetic variations influence cystic fibrosis' severity
How to design a better drug to treat cystic fibrosis
FDA Gives Clearance to the First Cystic Fibrosis DNA test

Subscribe to Cystic Fibrosis Newsletter

Enter your email address:


 Additional information about the news article
Tomich's research is funded in part by a grant from the National Institute of General Medical Sciences at the National Institutes of Health.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)