RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Dental Channel

subscribe to Dental newsletter
Latest Research : Dental

   EMAIL   |   PRINT
Orthodontics takes first step toward biological control of tooth movement

Jul 6, 2005 - 1:20:00 PM
"This is the first step orthodontics has taken to deal with the biologic control of tooth movement, and what the final product will be is hard to tell at this point. Obviously, we want to make it easily available, easily delivered and as pain-free as possible," Wheeler said. "This initial proof of principle trial will help us define how to accomplish that."

 
[RxPG] In the first study of its kind, University of Florida researchers are testing the power of a natural human hormone to biochemically move teeth faster and less painfully during orthodontic treatment.

"Most of orthodontics has traditionally dealt with physics, the biomechanics of applying a force against a tooth to move it," said study investigator Timothy Wheeler, D.M.D., Ph.D., a professor and chairman of orthodontics at UF's College of Dentistry. "Ours is the first study to use a naturally occurring hormone, recombinant human relaxin, to biochemically augment tooth movement and retention."

Relaxin is best known as the hormone that helps women's pelvic ligaments stretch in preparation for giving birth. It does this by softening collagen and elastin in the tissues, loosening strong, cord-like fibers until they have the consistency of limp spaghetti noodles.

That ability prompted researchers to consider relaxin a possible way to accelerate tooth movement and prevent relapse, a condition where the tooth migrates back to its original position after braces are removed.

"You can imagine normal collagen and elastin fibers to be like rubber bands that attach to the tooth to hold it in place," said Wheeler. "Those tissue fibers resist the force of the orthodontic treatment applied to move the tooth, and, when that force is removed, say when the braces are taken off, the elasticity of the tissues springs the tooth back into position."

UF researchers will evaluate whether injecting relaxin into the gums will loosen the collagen and elastin fibers and reorganize them so teeth can move more freely into orthodontic alignment. Once the teeth have been moved, researchers will administer another injection of relaxin under the premise that it will further soften gum tissue fibers, preventing them from pulling teeth back into their original position.

The study will be the first of many to test the hormone as an orthodontic therapy, and it is hoped the drug could cut treatment time in half and eliminate the need for retainers after braces have been removed.

This may not help the more than 5 million Americans and Canadians the American Association of Orthodontists estimates currently wear braces, but if it's shown to work it could bring a sigh of relief from those anticipating future tooth-torqueing orthodontic treatment and the aching teeth and throbbing gums that often go along with it.

The patent for the drug, which received the green light from the Food and Drug Administration last April for testing in human subjects, is owned by BAS Medical, a California-based company. BAS Medical is the sponsor of the UF study, which will establish safety and proof of principle on 40 people before a series of multicenter studies could begin testing the drug on hundreds worldwide.

Researchers won't know which of the 40 subjects receive relaxin and which receive a placebo. One tooth in each subject will be targeted for movement, and, subjects will wear Invisalign braces for eight weeks to move the targeted tooth. At week eight, the aligners will be removed and the teeth evaluated for relapse every four weeks for six months. As a safety measure, the week four outcomes of the first 12 patients entered into the study will be evaluated before the remaining 28 begin treatment. All 40 subjects will have completed the protocol by early October.

Wheeler said researchers hope to determine whether the treatment could eliminate the need for patients to wear retainers to hold teeth in place after braces are removed. The issue of retention - a term used to indicate the tooth remains in the position to which it has been moved without relapse - is a crucial aspect of the study.

"Right now, retention is the biggest problem we have in orthodontics," Wheeler said. "I want to get completely away from retainers, which for most patients right now are a lifetime commitment."

When patients don't wear retainers as prescribed, teeth gradually relapse, nullifying years of orthodontic treatment and expense. It is this lack of patient compliance that frustrates orthodontists worldwide.

"If the results of this study demonstrate enhancement of the rate of orthodontic tooth movement and better stability after treatment, it could be an exciting new method of increasing treatment acceptability while decreasing the need for compliance," said Robert Boyd, D.D.S., a professor and chairman of orthodontics at the University of the Pacific School of Dentistry. "Finishing orthodontic treatment without the usual regimen of lifetime use of retainers would greatly enhance the effectiveness and efficiency of current orthodontic treatment."

An important goal of future studies is to determine dosage and timing of drug delivery as well as delivery methods other than injection.

"This is the first step orthodontics has taken to deal with the biologic control of tooth movement, and what the final product will be is hard to tell at this point. Obviously, we want to make it easily available, easily delivered and as pain-free as possible," Wheeler said. "This initial proof of principle trial will help us define how to accomplish that."



Publication: University of Florida
On the web: http://www.ufl.edu/ 

Advertise in this space for $10 per month. Contact us today.


Related Dental News
Fluoride acts on plaque-causing bugs: Study
CBT is highly effective in Dental Phobia
Fewer heart patients need antibiotics before dental procedures
Secondhand smoke proves to be no 'joke' on oral health
Bacteria from patient's dental plaque causes ventilator-associated pneumonia
Root Beer May Be "Safest" Soft Drink for Teeth
Xylitol reduces risk of cavities
Researchers Use Stem Cells to Regenerate Parts of Teeth
Common Antacids Could Help Keep Gingivitis at Bay
Tetracycline plus teeth equal gray smile

Subscribe to Dental Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)