RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
  Stem Cell Research
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Embryology Channel

subscribe to Embryology newsletter
Latest Research : Embryology

   EMAIL   |   PRINT
A Developmental Switch in Neuronal Differentiation

Apr 27, 2005 - 2:27:00 AM
Arber’s team made genetically engineered mice in which ETS signaling occurred either at the correct time or earlier, and examined the development of the proprioceptive sensory neurons, which are involved in the coordination of body balance. In vivo, they found that early initiation of ETS signaling disrupts the axonal growth of the DRG neurons, both to their peripheral targets and into the spinal cord, and perturbs the acquisition of terminal differentiation markers. In vitro, premature ETS signaling allows the DRG neurons to survive and grow in the absence of the neurotrophins normally required for these processes.

 
[RxPG] Building an embryo is like building a house: everything has to be done at the right time and the right place if the plans are to be translated faithfully. On the building site, if the roofer comes along before the bricklayer has finished, the result may be a bungalow instead of a two-story residence. In the embryo, if the neurons, for example, start to make connections prematurely, the resultant animal may lack feeling in its skin.

On the building site, the project manager passes messages to the subcontractors, and they tell the laborers what to do and where. In the embryo, the expression of specific transcription factors (molecules that tell the cell which DNA sequences to convert into proteins) at different stages of development and in different places controls the orderly construction of the body.

Silvia Arber and her colleagues are studying the protracted process of neuronal differentiation in mice. Early in development, neurons are generated from dividing progenitor cells. Cell division stops soon after, and long extensions called axons grow out of the neurons in specific directions. When these axons reach their targets—peripheral tissues like the skin at one end, in the case of sensory neurons, and the spinal cord at the other—they form characteristic terminal branches. Finally, the nerves form contacts with other neurons so that they can pass messages on to the brain.

Many aspects of neuronal character are acquired through the expression of transcription factors in the progenitor cells or immediately after cell division stops. But Arber and her colleagues have been investigating whether an even later wave of transcription programs is needed for neuronal differentiation and circuit assembly in the sensory neurons of the dorsal root ganglia (DRG), structures containing the cell bodies of the sensory neurons. Previous work indicates that the release of molecules called neurotrophic factors by the neuron’s target tissues directs the late expression of Er81 and Pea3. These ETS transcription factors (so called because they contain a region known as the erythroblast-transformation-specific domain) control late aspects of the differentiation of DRG neurons. What would happen, the researchers asked, if ETS proteins were expressed earlier? Would precocious ETS expression in DRG neurons also direct the appropriate neuronal developmental programs?

Arber’s team made genetically engineered mice in which ETS signaling occurred either at the correct time or earlier, and examined the development of the proprioceptive sensory neurons, which are involved in the coordination of body balance. In vivo, they found that early initiation of ETS signaling disrupts the axonal growth of the DRG neurons, both to their peripheral targets and into the spinal cord, and perturbs the acquisition of terminal differentiation markers. In vitro, premature ETS signaling allows the DRG neurons to survive and grow in the absence of the neurotrophins normally required for these processes.

Arber and her coworkers conclude that the late onset of expression of ETS transcription factors induced by target-derived signals is essential for many of the later aspects of neuronal differentiation and circuit formation. During their differentiation, the researchers suggest, DRG neurons undergo a temporal switch in their ability to respond to ETS signaling. Further analysis of the mechanisms by which responses to transcription factor programs are altered over time during development will advance our understanding not only of neuronal differentiation but of other aspects of embryogenesis.



Publication: (2005) A Developmental Switch in Neuronal Differentiation. PLoS Biol 3(5): e180
On the web: Print PDF (34K) 

Advertise in this space for $10 per month. Contact us today.


Related Embryology News
Researchers construct erectile tissue in rabbits
First Demonstration of New Hair Follicle Generation
Early stage sperm cells created in laboratory
Faults in housekeeping genes regulating protein trafficking results in skeletal deformities
Neural stem cells derived from human embryonic stem cells carry abnormal gene expression
Neurons grown from embryonic stem cells restore function in paralyzed rats
New stem-cell findings can help the body to cure itself
Putting avian transgenics on a par with transgenic mice
Harvard to Create Human Embryonic Stem Cell Lines
Stem Cell Study for Patients with Heart Attack Damage Seeks to Regenerate Heart Muscle

Subscribe to Embryology Newsletter

Enter your email address:


 Additional information about the news article
A Developmental Switch in Neuronal Differentiation

DOI: 10.1371/journal.pbio.0030180

Published: April 26, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)