RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
  Cloning
  Genetic Disorders
   Brachydactyly
   Fragile X Syndrome
   Huntington's
   MSUD
   Progeria
  X Chromosome
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Genetic Disorders Channel

subscribe to Genetic Disorders newsletter
Latest Research : Genetics : Genetic Disorders

   EMAIL   |   PRINT
Roberts Gene ESCO2 Discovered to be behind "PSEUDOTHALIDOMIDE" Syndrome

Apr 12, 2005 - 1:02:00 PM
Because of advances in technology and computer analysis, the researchers were able to find the Roberts gene, called ESCO2, by studying samples from just 15 Roberts syndrome families from Colombia, Turkey, Canada and Italy and to provide insight into its biological effect.

 
[RxPG] A team of scientists from Colombia, the United States and elsewhere has successfully completed a 15-year-plus search for the genetic problems behind the very rare Roberts syndrome, whose physical manifestations often include cleft lip and palate and shortened limbs that resemble those of babies whose mothers took thalidomide during pregnancy.

The discovery, which is reported in the April 10 advance online section of Nature Genetics, proves that genes behind very rare inherited diseases can now be found, offering excellent opportunities to strengthen understanding of craniofacial and limb development, health and disease beyond the rare disease itself, say the researchers.

Because of advances in technology and computer analysis, the researchers were able to find the Roberts gene, called ESCO2, by studying samples from just 15 Roberts syndrome families from Colombia, Turkey, Canada and Italy and to provide insight into its biological effect.

"For decades now, we've known that the appearance and number of chromosomes were abnormal in people with Roberts syndrome, but we hadn't been able to figure out why or how," says Ethylin Jabs, M.D., a professor in the McKusick-Nathans Institute of Genetic Medicine at Johns Hopkins. "Just within the last few years have the genetic techniques, the genomic information, and the computer analysis become powerful enough to find the genetic mutations behind a disease as rare as Roberts."

Some of the techniques they used -- such as that to make many copies of DNA from a small sample -- have been around in some form for more than a decade. But others are much more recent developments. For example, the researchers found important genetic changes in part by comparing different species' genetic sequences, most of which were published only within the last four years.

"In 1989, we were collecting samples and characterizing the chromosome problem in cells from people with Roberts syndrome," Jabs remembers. "We knew it would be really important to find the gene, but it just wasn't practical at that time."

A few years later, in 1995, two Colombian geneticists started their quest to fully understand Roberts syndrome. Without their push, the gene for Roberts might still be unknown.

Colombian Hugo Vega had noticed an unusual number of patients with Roberts syndrome in the clinic at the University of Bogotá. Fairly quickly, he tracked down seven families with Roberts syndrome in two villages outside Bogotá. Four of the families share an 18th-century ancestor, he and Miriam Gordillo, then an undergraduate, discovered.

"The families have really collaborated with us, they've worked with us quite closely to help us uncover the gene behind the syndrome," says Gordillo. "Now we have about 10 affected families from outside Bogotá, and we can offer a genetic test to families at risk of Roberts syndrome."

Vega and Gordillo, a husband-and-wife team, criss-crossed the globe to continue their work and find better funding opportunities. In Japan, Vega tied the Colombian families' syndrome to a large region of chromosome 8. In The Netherlands, a post-9/11 detour, he added to his analysis samples from Turkish and Italian families with Roberts syndrome.

In 2004, Gordillo got a student visa to work with Jabs and to study for her doctorate in human genetics at Johns Hopkins. Over the past year, Gordillo analyzed the chromosome 8 region in samples from 15 families (consisting of 18 affected members and 33 unaffected members) and tied the condition to one of 6 genes.

Then, the international team compared the human sequence of the genes to those from chimpanzee, mouse, rat, chicken and zebrafish, and to the gene sequences of the affected family members. One segment of a gene called ESCO2 that was identical in all the animals contained changes that disrupted the gene's protein-making instructions in people with the syndrome. Knocking out the equivalent gene in yeast and fruit flies led to the same chromosome problems, says Gordillo.

"Comparative genomics didn't really exist even five years ago," says Jabs. "Techniques to genetically engineer yeast, fruit flies and even mice have dramatically improved in the last 15 years. And we were also able to look at when and where the gene is expressed during human development. Without these techniques, and without the powerful computer programs, we wouldn't have been able to identify this gene and confirm its role in Roberts syndrome."

The physical similarities of people with Roberts syndrome and those whose mothers took thalidomide suggest similar underlying biology, Jabs notes. Although there's some evidence that thalidomide prevents blood vessel growth, it's not clear why. If the underlying biology is related somehow, then thalidomide might affect chromosomes and cell division like ESCO2 in Roberts syndrome, Jabs speculates.

During normal cell division, every chromosome is copied, and each of the "original" chromosomes is attached to its "new" copy. While there are attachment points along the entire chromosome, the bulk of the connection is at the centromere, a chromosome's functional hub.

The chromosomes' connection allows the cell to move them together, ensuring that the two copies are lined up together at the center of the dividing cell. Once lined up, tiny molecular "motors" attach to the centromere of each copy and pull the original and the new copy away from each another as division proceeds.

However, in cells from people with Roberts syndrome, the chromosome copies are frequently not attached to each other at their centromeres and the chromosomes don't get lined up properly. As a result, the cell doesn't divide or divides very slowly, and the new cells can end up with too many or too few chromosomes (a problem also seen in cancer cells). In Roberts syndrome, the cells tend to stop growing or die, precluding proper development of the limbs, palate and other structures.



Publication: April 10 advance online section of Nature Genetic
On the web: www.nature.com/ng 

Advertise in this space for $10 per month. Contact us today.


Related Genetic Disorders News
XXYY syndrome- features and treatment options elucidated by researchers
Switching genes to overdrive improves muscular dystrophy symptoms in mice
Gene mutation associated with X-linked mental retardation revealed
Link between Huntington's and abnormal cholesterol levels in brain discovered
Williams Syndrome, the brain and music
Exploring genetics of congenital malformations
FDA Approves Idursulfase As First Treatment for Hunter Syndrome
PARP1 inhibitors can protect Huntington's disease affected cells from damage
Gene therapy protects neurons in Huntington's disease
Huntingtin cleavage is caused by caspase-6

Subscribe to Genetic Disorders Newsletter

Enter your email address:


 Additional information about the news article
Authors on the report are Hugo Vega, of the Institute of Genetics at the National University of Colombia, Bogotá; Norio Sakai, Chengzhe Xu, Keiichi Ozono and Koji Inui of Osaka University Graduate School of Medicine; Quinten Waisfisz, Djoke van Gosliga and Hans Joenje of VU University Medical Center, Amsterdam, The Netherlands; Miriam Gordillo and Ethylin Jabs of the McKusick-Nathans Institute of Genetic Medicine at Johns Hopkins; Itaru Yanagihara and Minoru Yamada of the Osaka Medical Center for Maternal and Child Health; and Hülya Kayserili of Istanbul University. Vega and Gordillo studied at the Osaka Graduate School of Medicine, also.

The researchers were funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology; the Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnologia; the Smile Train Fellowship Award to the Center for Craniofacial Development and Disorders at Johns Hopkins; the Louis H. Gross Foundation; J.S. Sutland; L. and S. Pakula; and the Netherlands Organization for Health Research and Development.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)