Switching genes to overdrive improves muscular dystrophy symptoms in mice
Apr 1, 2007 - 11:56:50 AM
, Reviewed by: Dr. Rashmi Yadav
|
|
âI think that if we could elevate the levels of PGC-1alpha in the muscles of patients with Duchenne muscular dystrophy, it is likely that we could slow or reduce the course of the disease.â
|
By Dana-Farber Cancer Institute,
[RxPG] Scientists at Dana-Farber Cancer Institute have shown in a laboratory study that revving up a crucial set of muscle genes counteracts the damage caused by a form of muscular dystrophy.
Reporting in the April 1 issue of Genes and Development, the researchers demonstrated that manipulating a genetic molecular switch increased the genesâ activity in the muscles of mice with Duchenne muscular dystrophy, slowing the disease-associated muscle wasting. The authors caution that they have not yet found a way to tweak the switch, known as PGC-1alpha, in humans.
âI think that if we could elevate the levels of PGC-1alpha in the muscles of patients with Duchenne muscular dystrophy, it is likely that we could slow or reduce the course of the disease,â said Bruce Spiegelman, PhD, the Dana-Farber researcher who led the team along with Christoph Handschin, PhD, formerly of Dana-Farber and now at the University of Zurich. Other authors are from the University of Iowa College of Medicine.
Duchenne muscular dystrophy (DMD) is the most common type of muscular dystrophy in children, occurring once in about every 5,000 live births of boys, and is ultimately fatal. The average age of death is the mid-teens, and most patients die by their 30s. In the United States, about 400 to 600 boys are born each year with DMD or Becker Muscular Dystrophy, a milder form of the disease. The cause is a mutation, either inherited or occurring spontaneously, that affects a muscle protein called dystrophin.
Spiegelman, whose laboratory discovered PGC-1alpha in 1998, led the new study which was aimed at determining whether increasing levels of PGC-1alpha in the muscles of mice could increase the activity of genes that are known to behave abnormally in muscular dystrophy.
PGC-1alpha is known as a âtranscriptional coactivatorâ that functions as a switch, or perhaps more accurately, like a light dimmer that increases or decreases the activity of genes under its control. Exercising a muscle raises PGC-1alpha levels, causing the formation of more mitochondria, the chemical power plants that create energy in cells.
PGC-1alpha is also required for the normal operation of genes that control the development of neuromuscular junctions (NMJ) â sites on muscle fibers where nerves attach and signal the fibers to contract. Part of the reason that exercise builds stronger muscles is that it increases PGC-1alpha activity. Conversely, disease or lack of exercise reduces PGC-1alpha activity, causing a loss of NMJ function and weakening, or atrophying, of muscles.
Spiegelmanâs team had previously bred a strain of mice with higher-than-normal levels of PGC-1alpha in their muscles. Also available for the research was a mouse model of Duchenne muscular dystrophy, the MDX mouse. In the new experiment, the scientists bred male high-PGC-1alpha mice with female MDX mice (the muscular dystrophy gene is carried by females in mouse and in humans.) As a result, the offspring of these matings had muscular dystrophy but also had elevated PGC-1alpha. Using exercise and chemical tests, the researchers compared muscle function in the offspring with MDX mice having no additional PGC-1alpha.
Both sets of rodents were run on a treadmill for one hour, then again 24 hours later. Normal mice completed the runs easily on both days, while untreated MDX rodents were exhausted halfway through each run. The MDX mice with increased PGC-1alpha activity performed almost as well as normal mice on the first day; their performances decreased on the second day, but they still did better than the untreated MDX mice on both runs.
The exercise tests and microscopic and chemical examinations of the muscles showed that boosting PGC-1alpha caused âa clear and substantial improvement in the structure and function of skeletal muscle in this disease model,â the scientists wrote.
Advertise in this space for $10 per month.
Contact us today.
|
|
Subscribe to Genetic Disorders Newsletter
|
|
About Dr. Rashmi Yadav
|
This news story has been reviewed by Dr. Rashmi Yadav before its publication on RxPG News website. Dr. Rashmi Yadav, MBBS, is a senior editor for RxPG News. In her position she is responsible for managing special correspondents and the surgery section of the website. Her areas of special interest include cardiothoracic surgery and interventional radiology.
RxPG News is committed to promotion and implementation of Evidence Based Medical Journalism in all channels of mass media including internet.
|
Additional information about the news article
|
Spiegelman said that his team is collaborating with researchers at the Broad Institute of Harvard and MIT in searching through libraries of drugs or drug-like compounds already approved by the Food and Drug Administration that could increase PGC-1alpha levels. Other searches are going on in the biotech and pharmaceutical industry, added Spiegelman.
The studies were supported by grants from the National Institutes of Health.
Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.
|
Feedback
|
For any corrections of factual information, to contact the editors or to send
any medical news or health news press releases, use
feedback form
|
Top of Page
|