RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
  Cloning
  Genetic Disorders
  X Chromosome
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Genetics Channel

subscribe to Genetics newsletter
Latest Research : Genetics

   EMAIL   |   PRINT
Mutations Change the Boolean Logic of Gene Regulation

Mar 29, 2006 - 6:39:00 AM , Reviewed by: Priya Saxena
The findings in this study support the growing appreciation that, from bacterium to baleen whale, complexity is highly dependent on fine-tuning gene regulation.

 
[RxPG] It is easy to think of a gene acting like a light bulb, switching either on or off, remaining silent, or being transcribed by the RNA-making machinery. The region of DNA that controls the gene's output is called its regulatory region, and in this simple (and too simplistic) scenario, that region would act like a simple on–off switch.

But the regulatory regions of real genes are more complex, and act more like molecular computers, combining the effects of multiple inputs and calibrating the gene's output accordingly. The inputs are the various molecules that affect gene activity by binding to sites in the regulatory region. These molecules combine their effects in complex ways. Sometimes the gene remains silent unless both are present. Sometimes they are additive, such that the output when two factors are present is twice the output when only one is present. Sometimes they cancel each other out—in the presence of either, the gene is transcribed, but in the presence of both, it is not.

Thus, the regulatory region acts as a Boolean logic function, whose simple ANDs, ORs, and NOTs combine to determine the output of the gene. In a new study, Avi Mayo, Uri Alon, and colleagues show that mutations in the regulatory region affect this logic function in a simple and well-studied genetic system, the lac operon in Escherichia coli bacteria, whose suite of genes regulate metabolism of lactose.

The authors began by creating multiple strains of bacteria with mutations in the binding sites for the two regulators of the gene, called CRP and LacI, that respond to cyclic AMP and IPTG, an analog of lactose. They analyzed the effect of these mutations on the rate of gene transcription in the presence of varying concentrations of the two inducers. Previously, the authors showed that the function of the unmutated regulatory region was intermediate between a pure “AND gate” (in Boolean parlance) and a pure “OR gate”: that is, at certain concentrations the first regulator AND the second were needed, but at others, one OR the other sufficed. In the mutated strains, they found that some mutations replicated this behavior, while others switched the regulatory region to a more purely AND or purely OR gate, independent of concentration. Some mutations left the regulator almost like a simple light switch, whose on-or-off state depended almost entirely on one, but not the other, regulator.

Next, they developed a mathematical model that links the binding strengths of the regulators for each mutation (the “inputs” of the “regulatory function”) to the gene output. Based on this model, they propose that point mutations in this system cannot create all of the 16 possible two-input gates described by Boolean logic. For instance, since both regulators stimulate gene activity, no simple mutation is likely to switch the system to an “AND NOT” gate, in which one input can stimulate only when the other is not present.

The authors suggest that applying this kind of logic analysis to genetic “circuits” may aid in the design of artificial genetic systems, and in understanding more complex gene regulatory regions. With only 30,000 genes, it is clear that humans and other complex creatures must depend on exquisitely regulated gene expression to develop and adapt to environmental changes. The findings in this study support the growing appreciation that, from bacterium to baleen whale, complexity is highly dependent on fine-tuning gene regulation.



Publication: Robinson R (2006) Mutations Change the Boolean Logic of Gene Regulation. PLoS Biol 4(4): e64
On the web: Read Research Article 

Advertise in this space for $10 per month. Contact us today.


Related Genetics News
Genetic study of bedbugs may help identify pesticide resistance genes
Novel method of database analysis to help identify responsible genes and diagnostic markers
Environmental influences can be passed down to the next generation
Gene found to be key in etiology of cleft palate
History, geography also seem to shape our genome
Induced pluripotent stem cell lines from pigs
Egg cells help extend life of sperms
Family of genes known as KRAB-ZFP regulate genes dealing with stress
New screening strategy increases Down's syndrome detection before birth
Can genetic research spur racist attitudes?

Subscribe to Genetics Newsletter

Enter your email address:


 Additional information about the news article
Mutations Change the Boolean Logic of Gene Regulation

Richard Robinson

DOI: 10.1371/journal.pbio.0040064

Published: March 28, 2006

Copyright: © 2006 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)