RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
  Cloning
  Genetic Disorders
  X Chromosome
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Genetics Channel

subscribe to Genetics newsletter
Latest Research : Genetics

   EMAIL   |   PRINT
Synthetic biology experiment turns up a previously unrecognized gene-expression phenomenon

Feb 16, 2006 - 7:47:00 PM , Reviewed by: Priya Saxena
"This phenomenon could be relevant to bacterial 'persisters' - dormant cells that are highly resistant to antibiotics. Many bacterial pathogens can generate these persisters, which over many months can become the source of chronic infections. We don't understand the how persisters arise, but we think this unexpected gene-expression variability in bacterial cells is an interesting phenomenon that should be explored."

 
[RxPG] An experiment designed to show how a usually innocuous bacterium regulates the expression of an unnecessary gene for green color has turned up a previously unrecognized phenomenon that could partially explain a feature of bacterial pathogenicity.

In a paper published in the Feb. 16 issue of Nature, researchers at Boston University (BU) and the University of California, San Diego (UCSD) reported that computer modeling predicted the new phenomenon before they confirmed it in laboratory experiments. The group led by James J. Collins, a biomedical engineering professor at BU, and Jeff Hasty, a bioengineering professor at UCSD, reported that the rise and fall in the amount of green-fluorescence protein in computer modeling matched the pattern recorded in E. coli cells grown in various laboratory conditions.

The researchers were surprised that cell-to-cell variation in the expression of the synthetic gene increased sharply as growth slowed and then stopped. "We were initially skeptical of our own results because they were so counterintuitive," said Collins. "But our laboratory experiments confirmed this increase in gene-expression variability, or noise, when growth stops. We think there may be some very interesting biology to explore in this situation."

Variability in gene expression could offer distinct survival advantages to a bacterium. Like a cruise ship whose life boats have been stocked with different combinations of food, first-aid kits, rain jackets, and flotation devices, a microscopic version of Survivor could occur in which only those individual bacterial cells with opportune combinations of proteins are able to weather harsh growth conditions in a pond or even inside a human body.

"This phenomenon could be relevant to bacterial 'persisters' - dormant cells that are highly resistant to antibiotics," said Collins. "Many bacterial pathogens can generate these persisters, which over many months can become the source of chronic infections. We don't understand the how persisters arise, but we think this unexpected gene-expression variability in bacterial cells is an interesting phenomenon that should be explored."

The group of researchers came up with the novel finding by using a relatively new research approach that involves the synthesis of simple gene networks, in this case one that produces a green-fluorescence protein. They measured expression of green fluorescence in a laboratory strain of E. coli under different growth conditions where other genes and proteins could potentially complicate the situation. They incorporated that information into a mathematical model.

The authors say their findings demonstrate the value of a so-called "bottom-up" approach to synthetic biology: models of relatively simple cellular processes can be used to predict the behavior of larger, more complex ones.

"We're excited by this study because the model itself led to a counterintuitive prediction that was supported by experimentation," said UCSD's Hasty. "The logical next step is to examine noise in the expression of proteins that would be essential to a bacterium's survival," Hasty said. "We've only begun to get an inkling of how noise in gene expression may be involved in the life of a cell."



Publication: Feb. 16 issue of Nature
On the web: www.ucsd.edu 

Advertise in this space for $10 per month. Contact us today.


Related Genetics News
Genetic study of bedbugs may help identify pesticide resistance genes
Novel method of database analysis to help identify responsible genes and diagnostic markers
Environmental influences can be passed down to the next generation
Gene found to be key in etiology of cleft palate
History, geography also seem to shape our genome
Induced pluripotent stem cell lines from pigs
Egg cells help extend life of sperms
Family of genes known as KRAB-ZFP regulate genes dealing with stress
New screening strategy increases Down's syndrome detection before birth
Can genetic research spur racist attitudes?

Subscribe to Genetics Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)