RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
  Bone Cancer
  Brain
   Glioblastoma Multiforme
   Medulloblastoma
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Glioblastoma Multiforme Channel

subscribe to Glioblastoma Multiforme newsletter
Latest Research : Cancer : Brain : Glioblastoma Multiforme

   EMAIL   |   PRINT
Signaling pathway discovered which may help find treatment for glioblastoma multiforme

Aug 14, 2010 - 9:28:59 PM , Reviewed by: Dr. Sanjukta Acharya

***image1***
 
[RxPG] Malignant gliomas are the most common subtype of primary brain tumor – and one of the deadliest. Even as doctors make steady progress treating other types of solid tumor cancers, from breast to prostate, the most aggressive form of malignant glioma, called a glioblastoma multiforme or GBM, has steadfastly defied advances in neurosurgery, radiation therapy and various conventional or novel drugs.

But an international team of scientists, headed by researchers at the Ludwig Institute for Cancer Research (LICR) at the University of California, San Diego School of Medicine, reports in the August 15 issue of Genes & Development that they have discovered a new signaling pathway between GBM cells – one that, if ultimately blocked or disrupted, could significantly slow or reduce tumor growth and malignancy.

More than other types of cancer, GBMs are diverse assemblages of cell subtypes featuring great genetic variation. Anti-cancer therapies that target a specific mutation or cellular pathway tend to be less effective against such tumor heterogeneity.

"These myriad genetic alterations may be one of the primary reasons why GBMs are so lethal," said Frank Furnari, PhD, associate professor of medicine at the UCSD School of Medicine and an associate investigator at the San Diego branch of the LICR.

Even with maximum treatment effort, the median patient survival rate for a diagnosed GBM is nine to 12 months – a statistic that has not changed substantially in decades.

However, Furnari, along with postdoctoral fellows Maria-del-Mar Inda and Rudy Bonavia, and Webster Cavenee, PhD, professor of medicine and director of the San Diego LICR branch, and others noted that in GBMs only a minority of tumor cells possess a mutant form of the epidermal growth factor receptor (EGFR) gene. These cells drive the tumor's rapid, deadly growth. "Most GBM tumor cells express wild-type or normal EGFR," said Furnari. "Yet when expressed by itself, wild-type EGFR is a poor oncogene."

The scientists discovered that tumor cells with mutant EGFR secrete molecules that cause neighboring cells with wild-type EGFR to accelerate their tumorigenic growth. "The mutant cells are instructing other less malignant tumor cells to become more malignant," said Furnari.

This signaling pathway between GBM tumor cells was not known and presents a new and potentially promising chink in the armor of glioblastomas. "If we can inhibit or block this cellular communication, the tumor does not grow as quickly and may be more treatable," Furnari said. Researchers have already identified two molecules that appear to trigger EGFR activity on non-mutant tumor cells.

The findings may also provide clues in the bigger picture of how GBMs and other cancers survive and thrive. "There are other types of mutations and growth factor receptors in tumors," Furnari said. "We need to look at how they communicate. Historically, brain tumor research has focused upon the most abundantly expressed mutations, but this research suggests minority mutations play very important roles as well."

The researchers' next step will be to create a mouse model with mixed cell glioblastoma that can be used to test different therapeutics, inhibitors and blocking agents.




Publication: August 15 issue of Genes & Development

Advertise in this space for $10 per month. Contact us today.


Related Glioblastoma Multiforme News
Signaling pathway discovered which may help find treatment for glioblastoma multiforme
Significant vaccine-enhanced immune response in malignant brain tumour
Simultaneous implantation of radioactive seeds and chemotherapy wafers promising in glioblastoma multiforme treatment
New vaccine to fight glioblastoma multiforme developed
Discovery could change the way doctors treat glioblastomas
Glioblastoma Gene Variations Can Predict Treatment Response
P-gp system let JV-1-36 pass into the brain to treat malignant glioblastomas
Combined gene therapy can eliminate glioblastoma multiforme

Subscribe to Glioblastoma Multiforme Newsletter

Enter your email address:


 About Dr. Sanjukta Acharya
This news story has been reviewed by Dr. Sanjukta Acharya before its publication on RxPG News website. Dr. Sanjukta Acharya, MBBS MRCP is the chief editor for RxPG News website. She oversees all the medical news submissions and manages the medicine section of the website. She has a special interest in nephrology. She can be reached for corrections and feedback at [email protected]
RxPG News is committed to promotion and implementation of Evidence Based Medical Journalism in all channels of mass media including internet.
 Additional information about the news article
Co-authors of the study include Akitake Mukasa, LICR and Department of Neurosurgery, University of Tokyo; Yoshitaka Narita, LICR and Neurosurgery Division, National Cancer Center Hospital, Tokyo; Dinah W.Y. Sah, Alnylam Pharmaceuticals; Scott Vandenberg, UCSD Department of Pathology,; Cameron Brennan, Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center; Terrance G. Johns, Monash Institute of Medical Research, Monash University; Robert Bachoo, Department of Neurology, University of Texas Southwestern Medical Center; Philipp Hadwiger and Pamela Tan, both at Alnylam Europe AG; and Ronald A. DePinho, Department of Medical Oncology, Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)