RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
  Brain Diseases
  Demyelinating Diseases
  Headache
  Memory
   Intelligence
  Neurochemistry
  Neurodegenerative Diseases
  Regeneration
  Spinal Cord Diseases
  Stroke
  Taste
  Trigeminal Neuralgia
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Intelligence Channel

subscribe to Intelligence newsletter
Latest Research : Neurosciences : Memory : Intelligence

   EMAIL   |   PRINT
Short term synaptic plasticity play a widespread role in information processing

Jun 23, 2006 - 12:33:00 AM , Reviewed by: Priya Saxena
Short-term plasticity may provide the mechanism by which animals' quickly changing brains help them navigate and comprehend the world.

 
[RxPG] Animals' neurons, and the synapses that connect them, are constantly changing. This plasticity is thought to underlie learning and memory. Take the rat in the maze. As he learns to navigate a new environment, familiarity with the space is reflected in the neuronal activity of a small almond-shaped brain structure called the hippocampus. Neurons in the hippocampus are generally quiescent. But when the rat meanders into a spot that a specific neuron prefers, called its “place field,” the neuron responds with high-frequency bursts of spikes. As the rat's familiarity with the maze increases over only a few minutes, so does the reliability by which hippocampal neurons respond to their preferred place. This short-term experience modifies the neurons' responses, and very likely the synapses, although the synaptic mechanisms of short-term plasticity in this context have not been fully described.

A new study takes a step forward in understanding the most basic level of this process: the short-term plasticity at hippocampal synapses that result from processing incoming signals resembling place-field responses. The researchers, Vitaly Klyachko and Charles Stevens, discovered a novel short-term plasticity mechanism by which excitatory and inhibitory synapses can selectively amplify high-frequency bursts.

For the study, the researchers used slices of the rat's hippocampus, focusing on cells from two particular regions, called CA1 and CA3, known for their role in encoding information about the animal's position. The researchers recorded long series of this firing activity, which they then used to stimulate two classes of hippocampal neurons: excitatory neurons, whose function is to spur neurons downstream to fire; and inhibitory neurons, which suppress neurons downstream.

In the hippocampus, these neurons form basic circuit elements, among which a “feed-forward loop” is one of the most common. In its simplest form, these loops feature an excitatory neuron connected to both an inhibitory neuron and an output neuron, and the inhibitory neuron is also connected to the output neuron. In this simple triangular network, incoming signals trigger both the excitatory and inhibitory neurons at once, and then the inhibitory neuron activates its synapses with a delay of a few milliseconds. From the output neuron's point of view, the incoming excitatory signals are closely followed by the inhibitory ones.

Several previous studies that tried to sort out how these neurons function during processing of incoming signals that resemble natural activity failed to produce coherent outputs from the neurons. These incoherent outputs may have resulted from the fact that the neurons were held at room temperature; as Klyachko and Stevens had shown before, short-term plasticity works differently at room temperature than at body temperature. To avoid the temperature problem in this study, Klyachko and Stevens held the brain slices at near body temperature.

With short-term plasticity, a synapse's response to any one signal depends on the signals it received in the previous few seconds. Synapses can sense when they're receiving a high number of impulses per second—that is, a high-frequency signal. Klyachko and Stevens found that, as long as the incoming signal was above a certain average rate, around 10 Hz, then the synapses would flip from a baseline state to an “active” state. The excitatory synapses became more excitatory, amplifying incoming signals. The inhibitory synapses responded oppositely, damping down their activity. Surprisingly, for any signals with higher frequency, these synapses' responses stayed constant even when the incoming signal rose to much higher frequencies, such as 100 Hz. The researchers also found that the excitatory and inhibitory synapses had mirror-image responses: when the excitatory synapses amplified a specific portion of a signal, the inhibitory synapses damped down their response at the same time.

When these two types of cells are wired together in a feed-forward loop, the researchers found that the excitatory and inhibitory synapses acted in concert, filtering out low-frequency signals while amplifying high-frequency signals. Thus, the study shows a function for the hippocampus's feed-forward loops not seen in earlier studies. It also shows a new role for inhibitory synapses: amplifying signals.

In this study, hippocampal neurons used short-term plasticity to filter neuronal signals for high-frequency events that encode important information for the animal. As the authors argue, this plasticity could also play a widespread role in information processing in the brain. Short-term plasticity may provide the mechanism by which animals' quickly changing brains help them navigate and comprehend the world.



Publication: Inman M (2006) Neurons' Short-Term Plasticity Amplifies Signals. PLoS Biol 4(7): e240
On the web: Read Research Article 

Advertise in this space for $10 per month. Contact us today.


Related Intelligence News
How brain pacemakers erase diseased messages
Music thought to enhance intelligence
Short term synaptic plasticity play a widespread role in information processing
Brain Rewards Curiosity with Shot of Natural Opiates
Dysbindin-1 gene (DTNBP1) - The Intelligence Gene
Brains of the smarter kids tend to change more dramatically
Brain size matters for intellectual ability

Subscribe to Intelligence Newsletter

Enter your email address:


 Additional information about the news article
Written by Mason Inman

DOI: 10.1371/journal.pbio.0040240

Published: June 20, 2006

Copyright: © 2006 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License.

PLoS Biology is an open-access journal published by the nonprofit organization Public Library of Science.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)