RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
  Bone Cancer
  Brain
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Nature Cancer Gene Therapy Liver Cancer Channel

subscribe to Liver Cancer newsletter
Latest Research : Cancer : Liver Cancer

   EMAIL   |   PRINT
Cancer cells metastatic to the liver are a perfect target for gene therapy, study reports

Feb 15, 2007 - 3:28:37 AM , Reviewed by: Dr. Rashmi Yadav
"We are taking advantage of a fundamental characteristic of cancer cells – structural disorganization. The disorganized structure of the cancer cells exposes the receptors so that Onyx-015, the adenoviral vectors used in this study, can readily enter tumor cells."

Key Points of this article
Cancer cells in the liver are excellent targets for gene therapy using adenoviral vectors, based upon a fundamental new understanding of the differences between cancerous and normal liver cells.
The findings signal a new way to treat cancers that have spread to the liver, such as metastatic cancers of the colon and breast.
The research demonstrates that in cancerous cells the receptor for adenovirus, called the coxsackie-adenoviral receptor or CAR, is expressed randomly over the surface of the cell and is exposed to the blood vessels.
 
[RxPG] A featured paper in the February 14 issue of Nature Cancer Gene Therapy demonstrates that cancer cells in the liver are excellent targets for gene therapy using adenoviral vectors, based upon a fundamental new understanding of the differences between cancerous and normal liver cells. The findings signal a new way to treat cancers that have spread to the liver, such as metastatic cancers of the colon and breast.

The research team, led by Tony Reid, M.D., Ph.D., of the Moores Cancer Center at University of California, San Diego (UCSD), reports that in normal liver cells there is only one receptor – or doorway the vector uses to enter the cell. This doorway is located at the base of normal liver cells, hidden from the blood vessels. The research also demonstrates that in cancerous cells the receptor for adenovirus, called the coxsackie-adenoviral receptor or CAR, is expressed randomly over the surface of the cell and is exposed to the blood vessels.

"Since the receptor is distributed randomly on the surface of tumor cells, the doorway is open for the adenoviral vectors circulating in the blood stream to infect and kill these cells," said Reid, who was at Stanford University when this work was conducted. "At the same time, normal liver cells are protected. These findings may signal a new way to treat any cancer that has spread to the liver."

Reid explained: "We are taking advantage of a fundamental characteristic of cancer cells – structural disorganization. The disorganized structure of the cancer cells exposes the receptors so that Onyx-015, the adenoviral vectors used in this study, can readily enter tumor cells. This may be the first time a therapy has been directed against the disorganized nature of cancer cells."

Reid and his colleagues undertook this study following the death of Jesse Gelsinger, a participant in a gene therapy clinical trial at University of Pennsylvania for ornithine transcarbanoylase (OTC) deficiency, a metabolic liver disorder. That case virtually stopped gene therapy research and spawned widespread safety concerns about gene therapy involving the liver.

"At that time, I was treating patients with colon cancer that had spread to the liver using a very similar adenoviral vector administered in exactly the same way – direct infusion into the main artery feeding the liver," said Reid, who is now an associate professor of clinical medicine in the UCSD School of Medicine. "We saw virtually no problems with toxicity in 35 study participants who received a total of nearly 200 infusions across several study sites."

So Reid and colleagues carefully re-analyzed the data from the 17 participants from the Stanford site to determine the impact of repeated adenoviral exposure on liver function, and documented that there were no significant problems. While the analysis was not designed to demonstrate impact on disease, it showed that seven of the 17 patients had stable-to-improving disease at the completion of four viral infusions. The researchers then demonstrated that normal liver cells could not be infected with an adenovirus, which led them to investigate where the receptor was located. They found it hiding at the junction between liver cells and proved that it was inaccessible from the blood flow in the liver. From there they showed that cancer cells had lost structural polarity, resulting in random distribution of CAR receptors on their surface, thereby allowing the virus to attach to and infect the tumor cells.

"In the process of proving that liver toxicity is not an issue in gene therapy, we have also shown that cancer cells metastatic to the liver are a perfect target for gene therapy because the cancer cells, but not the normal liver cells, are infected by the adenoviral vector," said Reid. "We also found that other cancer cells, including those from the breast, pancreas and prostate, are readily infected by adenoviral vectors indicating disorganized expression of the CAR receptor in these tumor cells. We believe these findings may have important implications across several types of cancer."

The researchers emphasized that while this study demonstrates that adenoviral vectors can be used to deliver targeted therapies and can be a useful tool for the treatment of cancer, further clinical trials are needed.


Original research article: http://health.ucsd.edu/news/2007/2_13_Reid.htm  
Publication: Nature Cancer Gene Therapy
On the web: http://www.ucsd.edu/ 

Advertise in this space for $10 per month. Contact us today.


Related Liver Cancer News
Thalidomide may help as adjuvant therapy for hepatocellular carcinoma
Chlorophyll limits the absorption of the carcinogen aflatoxin
Sunitinib slows tumor growth and metastasis in hepatocellular carcinoma
Combined stenting and photodynamic therapy may improve survival rates in liver cancer
Percutaneous radiofrequency ablation of liver tumors prove safe and effective
Cancer cells metastatic to the liver are a perfect target for gene therapy, study reports
Nexavar shown to significantly extend survival for patients with advanced liver cancer
Colchicine can delay the development of hepatocellular carcinoma
Study implicates two human genes in liver cancer
Skin rash after lapatinib for liver cancer determines survival

Subscribe to Liver Cancer Newsletter

Enter your email address:


 About Dr. Rashmi Yadav
This news story has been reviewed by Dr. Rashmi Yadav before its publication on RxPG News website. Dr. Rashmi Yadav, MBBS, is a senior editor for RxPG News. In her position she is responsible for managing special correspondents and the surgery section of the website. Her areas of special interest include cardiothoracic surgery and interventional radiology.
RxPG News is committed to promotion and implementation of Evidence Based Medical Journalism in all channels of mass media including internet.
 Additional information about the news article
Co-authors besides Reid are Tina Au, Steve Thorne and Daniel Sze of Palo Alto Veteran's Administration Health Care System and Stanford University; W. Michael Korn of the University of California, San Francisco; and David Kirn of Oxford University, Jennerex Biotherapeutics, San Francisco.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)