RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
  Brain Diseases
  Demyelinating Diseases
  Headache
  Memory
   Intelligence
  Neurochemistry
  Neurodegenerative Diseases
  Regeneration
  Spinal Cord Diseases
  Stroke
  Taste
  Trigeminal Neuralgia
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Memory Channel

subscribe to Memory newsletter
Latest Research : Neurosciences : Memory

   EMAIL   |   PRINT
Phase locking of hippocampal interneuron membrane potential

Dec 5, 2006 - 8:16:20 AM , Reviewed by: Himanshu Tyagi
This was a surprising finding, because the interneurones suppress those neurones in the hippocampus which are supposed to write information to the cerebral cortex precisely during phases of high activity.

 
[RxPG] If I can't remember this morning where I put my car keys last night, it's due to my memory failing me again. Scientists at the Max Planck Institute for Medical Research in Heidelberg have been investigating how memories might be consolidated. Their new study offers the hitherto strongest proof that new information is transferred between the hippocampus, the short term memory area, and the cerebral cortex during sleep. According to their findings and contrary to previous assumptions, the cerebral cortex actively controls this transfer. The researchers developed a new technique for their investigations which promises previously impossible insight into the largely under-researched field of information processing in the brain (Nature Neuroscience, November 2006).

The question of how the brain stores or discards memories still remains largely unexplained. Many brain researchers regard the consolidation theory as the best approach so far. This states that fresh impressions are first stored as short-term memories in the hippocampus. They are then said to move within hours or a few days - usually during deep sleep - into the cerebral cortex where they enter long-term memory. Investigations by Thomas Hahn, Mayank Mehta and the Nobel Prize winner Bert Sakmann from the Max Planck Institute for Medical Research in Heidelberg have now shed new light on the mechanisms that create memory. According to their findings, the areas of the brain work together, but possibly in a different way from that previously assumed. "This is a technically sophisticated study which could have considerable influence on our understanding of how nerve cells interact during sleep consolidation," confirmed Edvard Moser, Director of the Centre for the Biology of Memory in Trondheim, Norway.

It has been difficult up to now to use experiments to examine the brain processes that create memory. The scientists in Heidelberg developed an innovative experimental approach especially for this purpose. They succeeded in measuring the membrane potential of individual interneurones (neurones that suppress the activity of the hippocampus) in anaethetised mice. At the same time, they recorded the field potential of thousands of nerve cells in the cerebral cortex. This allowed them to link the behaviour of the individual nerve cells with that of the cerebral cortex. The researchers discovered that the interneurones they examined are active at almost the same time as the field potential of the cerebral cortex. There was just a slight delay, like an echo.

This was a surprising finding, because the interneurones suppress those neurones in the hippocampus which are supposed to write information to the cerebral cortex precisely during phases of high activity. According to Mayank Mehta the result can be interpreted in very different ways. "Either the mechanism contributes to memory consolidation, or the information transfer from one part of the brain to another during sleep does not proceed as we have previously assumed." The brain researchers now want to find out which of the possible explanations applies.

In any case, the scientists can use their new experimental method to investigate many other open questions in brain research. Thomas Hahn emphasised: "Putting the behaviour of a single neuron in the context of wider-scale patterns of activity promises to yield completely new insights into the principles according to which our brain is organised."



Publication: Thomas Hahn, Bert Sakmann & Mayank R. Mehta Phase-locking of hippocampal interneurons' membrane potential to neocortical up-down states Nature Neuroscience, November (2006)
On the web: www.mpg.de 

Advertise in this space for $10 per month. Contact us today.


Related Memory News
Enriched environment as a child helps reverse memory problem
How brain pacemakers erase diseased messages
Relational memory requires time and sleep
Phase locking of hippocampal interneuron membrane potential
Poor memory could signal heart disease
Memories: It's all in the packaging
Atrial Fibrillation linked to Reduced Cognitive Performance
Human Memory Gene Identified
How the Brain Loses Plasticity of Youth
Apple Juice Inproves Memory By Boosting Acetylcholine Production

Subscribe to Memory Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)