RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
  Brain Diseases
  Demyelinating Diseases
  Headache
  Memory
   Intelligence
  Neurochemistry
  Neurodegenerative Diseases
  Regeneration
  Spinal Cord Diseases
  Stroke
  Taste
  Trigeminal Neuralgia
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Memory Channel

subscribe to Memory newsletter
Latest Research : Neurosciences : Memory

   EMAIL   |   PRINT
Snails Helping to Make Viagra for Brain

May 8, 2005 - 8:22:00 PM
Drug manufacturers are looking at ways to create a "Viagra for the brain", which could alleviate memory loss, one of the distressing symptoms of diseases such as Alzheimer's. Work carried out by Dr George Kemenes, Senior Fellow in the Department of Biology and Environmental Science at the University of Sussex, will hopefully help to show how such drugs could work.

 
[RxPG] Dr Kemenes says: "If you lose your memory, you lose your personality. Impaired long-term memory is a devastating consequence of a variety of diseases affecting millions of people. The knowledge obtained from this work will help us to understand, and ultimately prevent and treat, memory disorders or even enhance normal memory."

He adds: "The aim is to find brain molecules that are crucial for the building up and maintenance of long-term memory and learning. The biggest hope is that we will then be able to find out how to operate those functions and improve the speed at which animals learn, or help them remember for longer periods of time. This would then link into drug development for humans."

To do this, Dr Kemenes and his team, funded by a £750,000 grant from the Medical Research Council, will attempt to chemically enhance or inhibit those functions in the common pond snail.

Snails are ideal for this kind of study because humans and pond snails actually share some important characteristics, unchanged by evolution. These include the basic molecular mechanisms that control long-term memory and learning. These processes involve the activation or suppression of a protein, CREB, which is key to the formation of long-term memory, and found in species ranging from molluscs and flies to rats and man.

These responses can be tested by classic "Pavlovian" experiments that bring about a conditioned response. A snail exposed to the smell of pear drops and then food (sucrose, which they love), for example, will respond weeks later to the smell of pear drops by rhythmically moving its mouth parts in anticipation of food, even when none is provided. This shows that the snail now has a memory associating the smell of pear drops with the arrival of food - a learned and remembered response.

This "flashbulb" memory - created by just one response to stimuli, is complemented in Dr Kemenes' research by another test, where the snail is exposed to a tickling stimulus (which it doesn't like) before food is introduced. It takes much longer for the snail to associate this tickling with the arrival of food. Dr Kemenes will attempt to learn how to inhibit the quickly learned memory and improve the weaker, more slowly-acquired memory at molecular level by using different chemical preparations to activate or suppress the release of the memory-forming CREB protein.

Snails are also vital to this part of Dr Kemenes' research because they have large neurons (nerve cells), which are easily identified, manipulated and observed under a microscope than mammalian brain cells, making them ideal subjects for exploring the learning and memory process at the cellular and molecular level.



Publication: Department of Biology and Environmental Science at the University of Sussex
On the web: www.sussex.ac.uk 

Advertise in this space for $10 per month. Contact us today.


Related Memory News
Enriched environment as a child helps reverse memory problem
How brain pacemakers erase diseased messages
Relational memory requires time and sleep
Phase locking of hippocampal interneuron membrane potential
Poor memory could signal heart disease
Memories: It's all in the packaging
Atrial Fibrillation linked to Reduced Cognitive Performance
Human Memory Gene Identified
How the Brain Loses Plasticity of Youth
Apple Juice Inproves Memory By Boosting Acetylcholine Production

Subscribe to Memory Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)