RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
  Bacteriology
  Virology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Microbiology Channel

subscribe to Microbiology newsletter
Latest Research : Microbiology

   EMAIL   |   PRINT
Artificial Illumination Using White or Green Light May Prevent Biofilm Formation on Artwork

Apr 15, 2006 - 6:41:00 PM , Reviewed by: Priya Saxena
"Although laboratory data cannot be extrapolated to natural environments, our results have prompted studies of the application of green light to artificially illuminated works of art,"

 
[RxPG] Using white or green light to artificially illuminate artwork may prevent biofilm formation and surface deterioration, say researchers from Spain. They report their findings in the April 2006 issue of the journal Applied and Environmental Microbiology.

Inappropriate artificial illumination of archeological remains and interior works of art can result in the development of uncontrolled photosynthetic microorganisms which form biofilms and contribute to surface biodeterioration. Biofilms are best described as a cluster of microorganisms attached to either an inert or living surface. Current control efforts include cleaning damaged surfaces and chemical treatments, both of which have had little success at biofilm prevention.

Spectral ambient light can cause variations in pigment distribution enabling an abundance of cyanobacteria and microalgae. Researchers selected green light for testing as it has previously shown to slow growth and affect pigment composition. It also represents the maximum absorbance of human vision. In the study researchers exposed artificial biofilms formed by Gloeothece membranacea and Chlorella sorokiniana to green and white light and evaluated their potential for preventing biofilm growth. Observations made suggest that green light could prevent the growth of biofilms with the exception of those capable of modifying accessory pigments.

"Although laboratory data cannot be extrapolated to natural environments, our results have prompted studies of the application of green light to artificially illuminated works of art," say the researchers.



Publication: M. Roldan, F. Oliva, M.A. Gonzalez del Valle, C. Saiz-Jimenez, M. Hernandez-Marine. 2006. Does green light influence the fluorescence properties and structure of phototrophic biofilms? Applied and Environmental Microbiology, 72. 4: 3026-3031
On the web: www.asm.org 

Advertise in this space for $10 per month. Contact us today.


Related Microbiology News
Predatory bacteria attack in 'military-style' waves
The Strange Case of the Radiation-Resistant Bacteria
Evolution of typhoid bacteria
New Treatment Using Human Antibodies to Target Harmful Toxins May Protect Against C. Difficile
Guinea Pig Aerosol Challenge Presents New Model for Q Fever Research in Humans
Gut Bacteria Cospeciating with Plataspid stinkbug
How West Nile virus evades immune defenses
An infectious agent of deception, exposed through proteomics
Gram positive bacterial membrane mystery solved
E.Coli uses 'shock absorbers' to combat adverse conditions

Subscribe to Microbiology Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)