RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
  Bacteriology
  Virology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Alex Loukas and colleagues Microbiology Channel

subscribe to Microbiology newsletter
Latest Research : Microbiology

   EMAIL   |   PRINT
Getting Closer to a Vaccine for Hookworm

Oct 7, 2005 - 3:12:00 PM
This result of vaccination against APR-1 shows the best efficacy so far reported for a recombinant vaccine aimed at reducing hookworm egg counts, intestinal worm burdens, and hookworm-induced blood loss, say the authors. They suggest that vaccination with APR-1 damaged the parasite's intestine and resulted in decreased blood intake by feeding worms, and, hence, reduced blood loss from the dogs.

 
[RxPG] Hookworms are intestinal parasites of mammals, including humans, dogs, and cats; in humans, these infections are a leading cause of intestinal blood loss and iron-deficiency anemia. These infections occur mostly in tropical and subtropical climates, and are estimated to infect about 1 billion people worldwide—about one-fifth of the world's population. People who have direct contact with soil that contains human feces in areas where hookworm is common are at high risk of infection; because children play in dirt and often go barefoot, they are at highest risk.

However, since transmission of hookworm infection requires development of the larvae in soil, hookworm cannot be spread person to person. Anthelminthic chemotherapy with benzimidazole drugs is effective at eliminating existing adult parasites. But since reinfection occurs rapidly after treatment, making a vaccine against hookworm disease is a public health priority. Previous animal vaccine studies have had mixed results. Dogs have been successfully vaccinated against infection with the dog hookworm Ancylostoma caninum by immunization with attenuated third-stage infective larvae (L3). Varying levels of efficacy have been reported for vaccination against the major antigens secreted by the same larval stage in hamsters and dogs. However, only partial reductions in parasite load have been reported. In addition, protective antigens from the larval stage are only expressed in larvae, not in adult worms; hence, antibodies against L3 secretions are useless against adult stage parasites in the gut.

In this month's PLoS Medicine, Alex Loukas and colleagues suggest that the ideal hookworm vaccine would be a mixture of two recombinant proteins, targeting both the infective larva and the blood-feeding adult stage of the parasite. Such a vaccine would limit the amount of blood loss caused by feeding worms and maintain normal levels of hemoglobin, said the authors. This outcome is particularly important in young children and women of childbearing age, where menstrual and, particularly, fetal hemoglobin demands are high.

Of the different proteins expressed by blood-feeding parasitic helminths, proteolytic enzymes have shown promise as intervention targets for vaccine development. A previous study in which dogs were vaccinated with a catalytically active recombinant cysteine hemoglobinase, Ac-CP-2, induced antibodies that neutralized proteolytic activity, and provided partial protection to vaccinated dogs by reducing egg output and worm size, but there were not significant reductions of adult worm burdens or blood loss.

In the present study, the researchers found that vaccination of dogs with recombinant Ac-APR-1, an aspartic hemoglobinase that initiates the hemoglobin digestion cascade in hookworms, induced antibody and cellular responses, and resulted in significantly reduced hookworm burdens and fecal egg counts in vaccinated dogs compared to control dogs after challenge with infective larvae of A. caninum. Most importantly, vaccinated dogs were protected against blood loss and most did not develop anemia, the major pathologic sequelae of hookworm disease.

The authors went on to show that IgG from vaccinated animals decreased the catalytic activity of the recombinant enzyme in vitro, and the antibody bound in situ to the intestines of worms recovered from vaccinated dogs, implying that the vaccine interfered with the parasite's ability to digest blood.

This result of vaccination against APR-1 shows the best efficacy so far reported for a recombinant vaccine aimed at reducing hookworm egg counts, intestinal worm burdens, and hookworm-induced blood loss, say the authors. They suggest that vaccination with APR-1 damaged the parasite's intestine and resulted in decreased blood intake by feeding worms, and, hence, reduced blood loss from the dogs.

The authors go on to suggest that the optimal hookworm vaccine would combine two elements: one to prevent L3 from developing into adult blood-feeding hookworms, and one to block the establishment, survival, and fecundity of the adult parasites in the intestine. Achieving both goals would require a vaccine comprised of an L3 antigen, such as ASP-2, which is now under clinical development, and an adult gut protease, such as APR-1.

These results have implications for human hookworm vaccine development; the authors finish by saying that there is now enough evidence to conclude that the counterpart vaccine for the major human hookworm Necator americanus (Na-APR-1) should be developed and entered into human clinical trials.



Publication: (2005) Getting Closer to a Vaccine for Hookworm. PLoS Med 2(10): e369
On the web: PDF of the Source Article at PLoS Medicine 

Advertise in this space for $10 per month. Contact us today.


Related Microbiology News
Predatory bacteria attack in 'military-style' waves
The Strange Case of the Radiation-Resistant Bacteria
Evolution of typhoid bacteria
New Treatment Using Human Antibodies to Target Harmful Toxins May Protect Against C. Difficile
Guinea Pig Aerosol Challenge Presents New Model for Q Fever Research in Humans
Gut Bacteria Cospeciating with Plataspid stinkbug
How West Nile virus evades immune defenses
An infectious agent of deception, exposed through proteomics
Gram positive bacterial membrane mystery solved
E.Coli uses 'shock absorbers' to combat adverse conditions

Subscribe to Microbiology Newsletter

Enter your email address:


 Additional information about the news article
DOI: 10.1371/journal.pmed.0020369

Published: October 4, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License.

PLoS Medicine is an open-access journal published by the nonprofit organization Public Library of Science.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)