RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
   Multiple Myeloma
   Non-Hodgkin's Lymphoma
  Bone Cancer
  Brain
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Genetic mutations will help in patient selection in Multiple Myelome treatment
Multiple Myeloma Channel

subscribe to Multiple Myeloma newsletter
Latest Research : Cancer : Blood : Multiple Myeloma

   EMAIL   |   PRINT
Predicting response of treatment in Multiple Myeloma patients

Dec 10, 2006 - 12:50:40 PM , Reviewed by: Sanjukta Acharya
"Bortezomib seems to work in about one-third of patients who use it, but we have not been able to predict which ones," says the study's lead author, Leif Bergsagel, M.D., a hematologist at Mayo Clinic Arizona. "We now have identified a group that will likely respond because these nine mutations seem to be present in at least 25 percent of newly diagnosed patients."

 
[RxPG] Researchers at Mayo Clinic Cancer Center, in cooperation with industry partners, have, for the first time, identified tumor specific alterations in the cellular pathway by which the multiple myeloma drug bortezomib (Velcade) works, and they have identified nine new genetic mutations in cancer cells that should increase a patient's chance of responding to the agent.

The investigators say these findings, presented Sunday, Dec. 10, at the 2006 American Society of Hematology Annual Meeting in Orlando, may help physicians tailor treatment to patients with multiple myleoma, a difficult-to-treat cancer of plasma cells that is the second most common blood cancer in the United States.

"Bortezomib seems to work in about one-third of patients who use it, but we have not been able to predict which ones," says the study's lead author, Leif Bergsagel, M.D., a hematologist at Mayo Clinic Arizona. "We now have identified a group that will likely respond because these nine mutations seem to be present in at least 25 percent of newly diagnosed patients.

"Now that we know the pathway the drug targets, and genetic mutations within this pathway that make patients respond better, we are working on a simple way to select those patients who are the best candidates for use of bortezomib," says Dr. Bergsagel.

In 2003, after only a four-month review, the Food and Drug Administration (FDA) approved use of bortezomib in patients who have failed other treatments for multiple myeloma. Later studies showed it lengthened survival by as much as six months. The drug was the first approved in a new class of agents known as proteasome inhibitors. Proteasomes are large protein groups inside cells that break down other proteins. Agents that inhibit the proteasome cause a buildup of proteins that affect many signaling cascades (various necessary biological processes). Bortezomib was initially thought to exert its activity by disrupting one of two known NF-êB (Nuclear Factor kappa B) pathways which keep cancer cells from self destructing the first-discovered, or canonical, NF-êB pathway.

But through extensive genetic examination of 42 unique multiple myeloma cell lines and tumor samples taken from 68 patients, the investigators defined multiple genetic mutations in the other NF-êB pathway, the so-called non-canonical pathway. "These mutations make the tumor more dependent on that pathway, and consequently more susceptible to bortezomib treatment," said senior author Rafael Fonseca, M.D., also at Mayo Clinic in Arizona.

"Identifying these mutations in patients will help us decide who should be treated with bortezomib, probably as an initial therapy," he says. The researchers are developing a test to check for activation of the non-canonical NF-êB pathway in patients.

Now that the mutations have been identified, drug designers may be able to fashion new therapies that are more specific to these genetic alterations and, therefore, less toxic,

Dr. Bergsagel says. "These mutations represent good targets for drug development," he says.




Publication: Mayo Clinic
On the web: For information regarding Mayo Clinic Cancer Center's related research click here 

Advertise in this space for $10 per month. Contact us today.


Related Multiple Myeloma News


Subscribe to Multiple Myeloma Newsletter

Enter your email address:


 Additional information about the news article
Other Mayo researchers involved in this study included Marta Chesi, Ph.D.; Scott Van Wier; Jonathan Keats, Ph.D.; Michael Sebag, M.D., Ph.D.; Wee-Joo Chng, M.D.; Roelandt Schop, M.D.; Homer Fogle III; Yuan Xiao Zhu Ph.D.; Chang-Xin Shi, Ph.D.; Tammy Price-Troska; Gregory Ahmann; Kim Henderson; Philip Greipp, M.D.; Angela Dispenzieri, M.D.; Keith Stewart, M.D.; and Rafael Fonseca, M.D. They collaborated with researchers John Carpten, Ph.D.; Angela Baker, Ph.D.; Tae-Hoon Chung, Ph.D.; Michael Barrett, Ph.D.; and Catherine Mancini from TGen, Phoenix, Ariz., and Laurakay Bruhn, Ph.D. from Agilent Labs, Santa Clara, Calif.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)