RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
  Neonatology
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Journal of Neuroscience Neonatology Channel

subscribe to Neonatology newsletter
Latest Research : Paediatrics : Neonatology

   EMAIL   |   PRINT
Different approach needed to protect brains of premature infants

Apr 11, 2007 - 5:12:23 AM , Reviewed by: Dr. Priya Saxena
"These injuries can lead to behavioral problems, developmental delay, cognitive impairment or cerebral palsy."

 
[RxPG] A study of how the brain of a premature infant responds to injury has found vulnerabilities similar to those in the mature brain but also identified at least one significant difference, according to neuroscientists and neonatologists at Washington University School of Medicine in St. Louis.

In an animal model of brain injury, researchers showed for the first time that parts of the developing brain are vulnerable to damage from glutamate, a nervous system messenger compound. Glutamate is already well-known for its links to injury in the mature brain. But scientists also found damage in the developing brain that could not be linked to glutamate, suggesting that different treatments are needed to prevent brain injury in premature infants.

More than two percent of babies are born before the completion of their eighth month of gestation, and up to half of these infants suffer brain injury. Unlike adults, premature infants receive the most damage in the white matter, the portions of the brain that connect different brain regions.

"These injuries can lead to behavioral problems, developmental delay, cognitive impairment or cerebral palsy," says senior author Mark P. Goldberg, M.D., professor of neurology and of neurobiology. "In this study, we've identified a unique vulnerability in the developing brain's white matter that likely contributes to those disabilities. We will be looking for new drug treatments to prevent injury."

The research, reported in the April 11 issue of The Journal of Neuroscience, was conducted at the Hope Center for Neurological Disorders, a partnership between the University and Hope Happens, a St. Louis-based nonprofit organization dedicated to raising funds for neurological research. Goldberg is director of the center.

Goldberg and lead author William J. McCarran, M.D., a neonatology fellow in the Department of Pediatrics, worked with a "slice-based" model of injury's effects on the developing brain. Goldberg says the model strikes a compromise between the confounding factors present in whole animal models and the limitations of studying single brain cells in culture.

"In whole animals, it's difficult to separate out what makes the brain uniquely vulnerable, and in cell cultures the neurons aren't really in their proper environment," he says. "For our model, we use mouse brain slices that we can keep alive for 12 hours. That keeps all the connections, structures and cell types intact and in their proper relationship. Our ability to observe these connections at the microscopic level provides a new window for understanding perinatal brain injury.”

To probe how the brain's response to injury changes, researchers took slices from the brains of mice of different ages. At birth, the mouse brain's development lags somewhat behind the human brain. A 3-day-old mouse brain, for example, is roughly equivalent to the human brain during the sixth to seventh month of gestation. Scientists studied slices from 3-, 7-, 10- and 21-day-old mice.

To simulate injury, researchers deprived the slices of oxygen and glucose for one hour. At all ages, the resulting damage hit hardest on glial cells, support cells that surround, nourish and protect brain cells; and axons, the treelike branches that brain cells use to communicate with each other. Studies of the brains of premature babies have found a similar pattern of injury.

Researchers for many years have linked brain damage to the effects of glutamate. When Goldberg and McCarran used drugs to block a glutamate receptor prior to cutting off oxygen and glucose, it reduced injury with one noteworthy exception.

"In the three-day-old mouse brain slices, the blockers couldn't prevent damage to the axons," Goldberg says. "So something other than glutamate is killing the axons at that point in brain development."

In the early brain, axons lack a protective sheath called myelin. Glial cells supply this sheath, which is made mostly of lipids and makes about 50 percent of the human brain appear white, rather than gray. Goldberg and others have been developing a theory that much of the harm done by strokes and other brain injury begins in this white matter. They suspect that damage to connections between brain cells eventually leads to the cells' deaths.

Using the slice model, researchers plan follow-up studies of axons before they're coated in myelin and of potential protective compounds.

"This model turns out to be a powerful tool for seeking out and testing new drugs, so we want to test a number of new pharmaceuticals to see if any can protect axons early in brain development," Goldberg says.




Publication: Journal of Neuroscience
On the web: http://medinfo.wustl.edu/ 

Advertise in this space for $10 per month. Contact us today.


Related Neonatology News
Premature babies are less sensitive to temperature sensations later in life
Study into pre and pro-biotic use in primary prevention of necrotizing enterocolitis
Different approach needed to protect brains of premature infants
Cot death could be linked to brain defect
So...how would you design your baby?
Longer needles best for infant immunization
Meconium may provide clues to fetal alcohol exposure
Delayed Umbilical Cord Clamping Boosts Iron in Infants
Researchers identify agents that may make vaccines effective at birth
First FDA Clearance of Sterile Field Cord Blood Collection Bag

Subscribe to Neonatology Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)