RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
  Brain Diseases
  Demyelinating Diseases
  Headache
  Memory
  Neurochemistry
  Neurodegenerative Diseases
  Regeneration
  Spinal Cord Diseases
  Stroke
  Taste
  Trigeminal Neuralgia
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Regeneration Channel

subscribe to Regeneration newsletter
Latest Research : Neurosciences : Regeneration

   EMAIL   |   PRINT
Novel role for ubiquitin/proteosome in regulation of actin dynamics

Oct 2, 2005 - 5:53:00 PM
The authors find high levels of Rnf6 protein in axonal projections of motor neurons and dorsal root ganglia neurons in mouse embryos at a time in which projections are actively developing, suggesting a role of this protein in the development of these neurons. They are able to show that this is indeed the case by RNAi-mediated knock-down of Rnf6 in primary hippocampal neurons, which stimulate axon outgrowth, and by over-expression of Rnf6 that results in a significant decrease in axon length.

 
[RxPG] In a recent study, Dr. Ingolf Bach and colleagues from the University of Massachusetts Medical School, Worcester and the University of Hamburg (Germany) describe a novel role for the ubiquitin/proteosome protein degradation pathway in the regulation of local actin dynamics in neurons.

The authors are able to show that the ubiquitin ligase Rnf6 polyubiquitinates the kinase LIMK1, targeting it for proteosomal degradation in the growth cones of hippocampal neurons. LIMK1 regulates the dynamics of the actin cytoskeleton primarily via phosphorylation of the actin depolymerization factors ADF/cofilin, with important consequences for cell morphology, cell motility, and the development of neuronal projections. Changes in LIMK1 concentration have an impact in neuronal growth cone actin dynamics and axon formation.

The authors focus on the RING finger protein Rnf6 due to its similarity to the previously identified protein RLIM, which has been shown to bind to nuclear LIM domains and critically regulate the biological activity of LIM-HD transcription factors. The authors find high levels of Rnf6 protein in axonal projections of motor neurons and dorsal root ganglia neurons in mouse embryos at a time in which projections are actively developing, suggesting a role of this protein in the development of these neurons. They are able to show that this is indeed the case by RNAi-mediated knock-down of Rnf6 in primary hippocampal neurons, which stimulate axon outgrowth, and by over-expression of Rnf6 that results in a significant decrease in axon length.

Finding that Rnf6 targets LIMK1 for degradation finally closes this circle of regulation, providing the link between actin dynamics, axonal growth and Rnf6. Importantly, the authors are able to show that changes in axon outgrowth induced by changes in levels of Rnf6 can be restored by compensatory changes in LIMK1 expression, thereby giving Rnf6 a central role in controlling actin dynamics in subcellular structures. Because LIMK1 has been implicated in biological processes such as metastasis and invasion of cancer, Dr. Bach points out that "…these results indicate that Rnf6 not only plays an important role in coordinating neuronal development but may be also involved in oncogenesis."



Publication: Genes & Development
On the web: www.cshl.org 

Advertise in this space for $10 per month. Contact us today.


Related Regeneration News
Salamanders can regenerate damaged lungs
Severed nerve fibers in spinal cord can regenerate for long distances
Common brain cells may have stem-cell-like potential
Using Embryonic Stem Cells to Awaken Latent Motor Nerve Repair
Understanding how axons find their destinations
Novel stem cell technology leads to better spinal cord repair
Myosin-II: A new focus for the mechanism of nerve growth
Structural remodeling of neurons demonstrated in mature brains
How "baby" neurons are integrated into brain
Nerve regeneration is possible in spinal cord injuries

Subscribe to Regeneration Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)