RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
  Brain Diseases
  Demyelinating Diseases
  Headache
  Memory
  Neurochemistry
  Neurodegenerative Diseases
  Regeneration
  Spinal Cord Diseases
  Stroke
  Taste
  Trigeminal Neuralgia
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Regeneration Channel

subscribe to Regeneration newsletter
Latest Research : Neurosciences : Regeneration

   EMAIL   |   PRINT
Understanding how axons find their destinations

Jun 16, 2006 - 11:45:00 PM , Reviewed by: Himanshu Tyagi
"The question was how do these motor neurons know where to go,"

 
[RxPG] During embryonic development, nerve cells hesitantly extend tentacle-like protrusions called axons that sniff their way through a labyrinth of attractive and repulsive chemical cues that guide them to their target.

While several recent studies discovered molecules that repel motor neuron axons from incorrect targets in the limb, scientists at the Salk Institute for Biological Studies have identified a molecule, known as FGF, that actively lures growing axons closer to the right destination.

"The most important aspect of our finding is not necessarily that we finally nailed the growth factor FGF as the molecule that guides a specific subgroup of motor neurons to connect to the muscles that line our spine and neck," says senior author Samuel Pfaff, Ph.D., a professor in the Gene Expression Laboratory, "but that piece by piece, we are uncovering general principles that ensure that the developing nervous system establishes proper neuronal connections."

Understanding how axons find their destinations may help restore movement in people following spinal cord injury, or those with motor neuron diseases such as Lou Gehrig's disease, spinal muscle atrophy, and post-polio syndrome. Failure to establish proper connectivity in the brain may also underlie autism spectrum disorders and mental retardation.

The multitasking members of the FGF growth factor family regulate blood vessel formation, wound repair, lung maturation, and development of skeletal muscle, blood and bone marrow cells. The Salk study adds on more job to an already long list.

"Our study emphasizes that the nervous system does not necessarily rely on an entirely new set of molecules to govern axon navigation, but instead uses growth factors already involved in embryonic development in clever and novel ways," Pfaff says.

Skeletal muscle consists of thousands of muscle fibers, each controlled by one motor neuron whose cell body lies in the brain or spinal cord. Connections between muscle and nerve cells are established embryonically when newborn neurons extend axons to "wire" the appropriate muscle fiber.

The wiring process is highly orchestrated –each motor neuron has already pledged allegiance to a particular muscle fiber before it reaches out to connect with its predetermined partner. But until now, scientists could only speculate how the invisible bond was formed.

"The question was how do these motor neurons know where to go," says Pfaff. "It would be a disaster if you wanted to move your arm and instead bent your back."

Earlier studies suggested that muscles lining the spine sent out chemical cues as a siren song for specific motor neurons known as MMCm cells. But when attempts to identify the enticing substance failed, many started to doubt its existence.

After screening numerous candidates, the Pfaff team found not only that FGF is expressed in target muscle, but that FGF "sensors," known as FGF receptors, are expressed in MMCm motor neurons. Furthermore, MMCm axons could not "hear" their muscle partner's call and failed to reach their destination in mouse mutants lacking the sensor molecule.

Finally, using mice engineered to express a fluorescent protein in MMCm neurons, the investigators demonstrated that only the glowing neurons extended axons in the direction of target cells expressing FGF.

"After a lot of hard work, we narrowed it down to FGFs and showed that they were indeed the long sought-after mysterious substance," says Pfaff. Neural stem cells can now be coaxed to develop into motor neurons in a test tube. In that artificial environment, explains Pfaff, "Most external cues that guide immature motor neurons during embryonic development will be missing." Hence the need to identify axon guidance factors. He continues, "It is not enough to make the right cell type, you need to connect them to the right target. Growth factors like FGF may be crucial to persuade and guide them towards the desired destination."



Publication: Their findings appear in the June 15 issue of Neuron.
On the web: www.salk.edu 

Advertise in this space for $10 per month. Contact us today.


Related Regeneration News
Salamanders can regenerate damaged lungs
Severed nerve fibers in spinal cord can regenerate for long distances
Common brain cells may have stem-cell-like potential
Using Embryonic Stem Cells to Awaken Latent Motor Nerve Repair
Understanding how axons find their destinations
Novel stem cell technology leads to better spinal cord repair
Myosin-II: A new focus for the mechanism of nerve growth
Structural remodeling of neurons demonstrated in mature brains
How "baby" neurons are integrated into brain
Nerve regeneration is possible in spinal cord injuries

Subscribe to Regeneration Newsletter

Enter your email address:


 Additional information about the news article
Additional contributors to this study included first author Ryuichi Shirasaki, Ph.D., a former postdoctoral fellow in Pfaff's lab and now a faculty member at Osaka University, Japan; postdoctoral fellow Joseph W. Lewcock, Ph.D.; and research assistant Karen Lettieri, both at Salk.

The Salk Institute for Biological Studies in La Jolla, California is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health, and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)