RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
  Hemochromatosis
  Hyperlipidemia
  Metabolic Syndrome
  Obesity
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Obesity Channel

subscribe to Obesity newsletter
Latest Research : Metabolism : Obesity

   EMAIL   |   PRINT
Fat overload kills mammalian cells

Jan 19, 2006 - 3:46:00 PM , Reviewed by: Sanjukta Acharya
"When lipids (fats) accumulate in tissues other than adipose tissue, cellular dysfunction or cell death results. For example, preliminary studies on animals suggest that the accumulation of fat in the pancreas contributes to the development of diabetes, and accumulation of lipids in skeletal muscle of leads to insulin resistance."

 
[RxPG] Investigating the harmful health effects of excess fat, researchers at Washington University School of Medicine in St. Louis have identified a protein that triggers death in mammalian cells overloaded with saturated fat.

The internal "skeleton" (in red) of cells is altered by exposure to high fat.

When the researchers halted production of this protein, called EF1A-1, the cells were able to thrive in ordinarily damaging amounts of the saturated fat palmitate, a fat abundant in Western diets. At the same concentration of palmitate, normal cells still producing EF1A-1 rapidly died. The study will be published in the February 2006 issue of Molecular Biology of the Cell.

"When lipids (fats) accumulate in tissues other than adipose tissue, cellular dysfunction or cell death results," says senior author Jean Schaffer, M.D., associate professor of medicine and of molecular biology and pharmacology. "For example, preliminary studies on animals suggest that the accumulation of fat in the pancreas contributes to the development of diabetes, and accumulation of lipids in skeletal muscle of leads to insulin resistance."

Other studies have linked the genesis of heart failure to fat-induced cell dysfunction and cell death in the heart. "As physicians our primary focus in diabetic patients is on glucose control," says Schaffer, a member of the Center for Cardiovascular Research at the School of Medicine and a cardiologist at Barnes-Jewish Hospital. "But it appears we should also be more aggressive with respect to lowering lipids such as triglycerides and fatty acids."

With the discovery of EF1A-1's role, this study is the first to identify a critical step in the pathway that leads from high cellular fat to cell death, according to Schaffer. EF1A-1 is an extremely abundant protein with several diverse functions within cells, including protein synthesis and maintenance of the cytoskeleton, the cell's internal support structure.

In mammalian cells grown in culture, the researchers saw that EF1A-1 and the fat palmitate work hand in hand: the presence of EF1A-1 dictated sensitivity to palmitate-induced cell death, and palmitate caused a rapid increase of the amount of EF1A-1 produced.

Schaffer's laboratory earlier had developed a transgenic mouse that accumulates fat in its heart muscle cells resulting in the death of cells, heart failure and premature death. They found that EF1A-1 was increased nearly three-fold in the hearts of these animals.

Removal of EF1A-1 protected cells from palmitate-induced death, and its absence allowed cells to withstand assault by highly reactive oxygen molecules. According to study authors, this indicates that EF1A-1 probably contributes to cell death from oxidative stress, which is known to stem from high lipid levels. Cytoskeletal changes seen in cells missing EF1A-1 suggested to the researchers that EF1A-1's cytoskeletal role also is important in cell death resulting from fat overload.

"Cells have a lot of mechanisms for incorporating fatty acids into storage forms, for metabolizing them or for using them in cellular membranes," Schaffer says. "But saturated fats like palmitate are poorly stored in the tiny fat droplets normally found in most cells and therefore are more likely to enter into pathways that lead to cell death such as the one in which EF1A-1 is involved."

In the process of identifying the role of EF1A-1, the lab members uncovered other proteins implicated in the toxicity of excess fats. They are now investigating each to find out what part it plays.

Future investigations by Schaffer's research team will study the EF1A-1 protein to see whether fatty molecules directly alter the protein, or if they cause it to relocate within the cell.



Publication: Borradaile NM, Buhman KK, Listenberger LL, Magee CJ, Morimoto ETA, Ory DS, Schaffer JE. A critical role for eukaryotic elongation factor 1A-1 in lipotoxic cell death. Molecular Biology of the Cell, February 2006.
On the web: Washington University School of Medicine  

Advertise in this space for $10 per month. Contact us today.


Related Obesity News
Overweight people will stay that way for ever
Your shampoo could be making you fat
This asthma drug can burn your fat
Burning fat can lead to a longer life in worms
New obesity drug, Tesofensine, seems promising
Can slowing down 'fat burning' genes reduce obesity?
Personal counseling helps in maintaining weight loss
Type 2 muscle important in body metabolism and obesity
A Predisposition to Obesity
Obesity in mothers responsible for obese offspring

Subscribe to Obesity Newsletter

Enter your email address:


 Additional information about the news article
Washington University School of Medicine's full-time and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.
Funding from the National Institutes of Health, the Washington University School of Medicine--Pharmacia Biomedical Program (JES) and the Heart and Stroke Foundation of Canada supported this research.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)