RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
  Anorexia Nervosa
  Anxiety
  Bulimia
  CFS
  Child Psychiatry
  Depression
  Forensic Psychiatry
  Learning-Disabilities
  Mood Disorders
  Neuropsychiatry
  Peri-Natal Psychiatry
  Personality Disorders
  Psychology
  Psychoses
  Psychotherapy
  Sleep Disorders
  Substance Abuse
   Alcohol
   Amphetamine
   Cannabis
   Cocaine
   Opiates
   Smoking
  Suicide
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Opiates Channel

subscribe to Opiates newsletter
Latest Research : Psychiatry : Substance Abuse : Opiates

   EMAIL   |   PRINT
Opiate cocktail may spare cells from morphine's dark side

Jun 7, 2005 - 1:49:00 AM
The authors indeed found that the combination of morphine with the methadone mixture prevented the activation of cellular signaling pathways associated with morphine tolerance and dependence. They also showed, perhaps most importantly, that whereas rats receiving only morphine develop tolerance to the drug, those rats receiving the morphine/methadone cocktail did not show tolerance. Moreover, past work has not indicated whether the promotion of MOP-receptor internalization could prevent the development of morphine dependence, but in the new study, the authors discovered that rats receiving the morphine/methadone cocktail also experienced reduced morphine dependence.

 
[RxPG] Although morphine is well known as a highly effective analgesic, its clinical utility is severely limited by the development of drug tolerance, the requirement for increasing doses to maintain analgesic effect, and the development of physical dependence. In the June 7 issue of Current Biology, researchers report a new study showing that the administration of a drug cocktail containing morphine along with small doses of two versions of methadone, a related opioid drug, significantly reduced both tolerance and dependence in test animals.

The work is reported by Li He and Jennifer Whistler of the Ernest Gallo Clinic and Research Center and the University of California, San Francisco.

The analgesic effects of morphine arise through the interaction of the drug with a specialized protein on the surface of cells, the mu opioid peptide receptor, or "MOP" receptor. MOP receptors are also activated by other opioid drugs and by endogenous opioids, such as endorphins. However, morphine is unique in that unlike other opioids, it does not cause the MOP receptor to be internalized into the cell's interior after activation. It is thought that the activated receptor's persistence at the cell surface leads to a compensatory overactivation of a particular signaling pathway in the cell--a signaling imbalance that is a hallmark of opiate tolerance and dependence. This suggests that the promotion of MOP-receptor internalization might prevent such cellular signaling imbalances, and indeed past work from Whistler indicated that mutant versions of the receptor that are more readily internalized were associated with reduced levels of morphine tolerance in mice.

In the new work, the researchers sought a more clinically practical approach to facilitating MOP-receptor internalization in the presence of morphine. Reasoning that because other opioid drugs promote internalization of MOP receptors, and that their presence in combination with morphine may prevent the persistence of activated MOP receptors at the cell surface, the authors developed a drug cocktail containing morphine along with two chemical versions of the opioid methadone, which is tolerated, with limited side effects, at low doses.

The authors indeed found that the combination of morphine with the methadone mixture prevented the activation of cellular signaling pathways associated with morphine tolerance and dependence. They also showed, perhaps most importantly, that whereas rats receiving only morphine develop tolerance to the drug, those rats receiving the morphine/methadone cocktail did not show tolerance. Moreover, past work has not indicated whether the promotion of MOP-receptor internalization could prevent the development of morphine dependence, but in the new study, the authors discovered that rats receiving the morphine/methadone cocktail also experienced reduced morphine dependence.

In light of their findings, the authors propose that an opiate cocktail that combines morphine with small doses of methadone would increase the effectiveness of morphine for the treatment of chronic pain.



Publication: He, L., and Whistler, J.L. (2005). An Opiate Cocktail that Reduces Morphine Tolerance and Dependence. DOI 10.1016/j.cub.2005.04.052 Publishing in Current Biology, Vol. 15, June 7, 2005, pages 1028–1033. www.current-biology.com
On the web: www.current-biology.com 

Advertise in this space for $10 per month. Contact us today.


Related Opiates News
Broken Heart Syndrome can result from opioid withdrawal
Factors influencing transition to injecting drug use among heroin users
Study supports a flexible approach to methadone dosing
Buprenorphine more effective in teen heroin addiction treatment retention
Morphine leave animals more vulnerable to stress
Opiate cocktail may spare cells from morphine's dark side

Subscribe to Opiates Newsletter

Enter your email address:


 Additional information about the news article
The researchers include Li He and Jennifer L. Whistler of the Ernest Gallo Clinic and Research Center and University of California, San Francisco. This work was supported by National Institute on Drug Abuse (NIDA) grant and funds provided by the state of California for medical research on alcohol and substance abuse through the University of California, San Francisco (UCSF) to J.L.W.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)