RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
  Cloning
  Genetic Disorders
   Brachydactyly
   Fragile X Syndrome
   Huntington's
   MSUD
   Progeria
  X Chromosome
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Progeria Channel

subscribe to Progeria newsletter
Latest Research : Genetics : Genetic Disorders : Progeria

   EMAIL   |   PRINT
Anti-cancer drugs might work in aging disease

Aug 30, 2005 - 7:45:00 PM
The average lifespan of victims, who eventually resemble very old bald people or, some might say, Hollywood's conception of space aliens, is 12 years.

 
[RxPG] Working together, scientists at the National Institutes of Health and the University of North Carolina at Chapel Hill have developed a promising new strategy for treating a form of progeria. That rare but deadly and heartbreaking genetic disease causes children to age remarkably fast and die almost always before they complete their teens.

The average lifespan of victims, who eventually resemble very old bald people or, some might say, Hollywood's conception of space aliens, is 12 years.

Along with their staffs and students, Dr. Francis S. Collins, director of the National Human Genome Research Institute, has collaborated with Drs. Channing J. Der and Adrienne D. Cox of the UNC School of Medicine in laboratory studies.

They have shown that certain anti-cancer drugs known as FTIs can block some of the complex biochemical processes that result in progeria's symptoms. The collaboration came about because the UNC scientists have been working on the drugs for more than a decade, and Collins' group has been actively investigating progeria of childhood, which also is known as Hutchinson-Gilford syndrome.

The potential treatment has not been used with patients yet but had a strong positive effect on progeria patients' cells, they said.

Respectively, Cox and Der are associate professor of radiation oncology and pharmacology and professor of pharmacology and members of UNC's Lineberger Comprehensive Cancer Center. Collins, a UNC medical graduate, attracted widespread attention in 1989 as the discoverer of the defective gene that causes cystic fibrosis, another fatal illness that afflicts children.

A report on the research appears in the Sept. 6 issue of the Proceedings of the National Academy of Sciences. Other authors of the report include M.D.-Ph.D. student Brian C. Capell of Collins' NIH laboratory; NIH staff members Drs. Michael R. Erdos, Renee Varga and Leslie B. Gordon (also medical director of the Progeria Research Foundation); doctoral student James P. Madigan of Cox's laboratory; Dr. James Fiordalisi, assistant professor of radiation oncology at UNC; and Dr. Karen N. Conneely of the University of Michigan School of Public Health.

"Fortunately, progeria is very rare, and only about one child in four million comes down with it," Der said. "It was first identified in the early 1900s. Since then only 100 or so cases have been found. Still, it is quite devastating for those children who have it and their families."

He and Cox concentrate on FTIs, or farnesyltransferase inhibitors, which block the action of the enzyme farnsyltransferase. Currently, several chemical variations are undergoing clinical trials with cancer patients.

"There's a lot of interest in FTIs now because they target an enzyme that's required for a protein called RAS to cause cancer," Der said. "The idea that these FTIs also might be useful in treating progeria came up because it turns out that the gene that is mutated in that rare illness also requires this enzyme for generating an active protein known as lamin A."

In progeria patients, he said, the process that results in the normal, mature form of lamin A doesn't work correctly because of the genetic mutation, so a damaged form of lamin A is made instead. Researchers reasoned that the anti-cancer drugs might block the enzyme and hence interfere with the mutated lamin A gene's haywire actions.

"In the paper, we describe experiments showing that the mutant form of lamin A was indeed sensitive to these drugs," Der said. "The second thing we found was that some of the aberrant biology that this mutant protein causes can be stopped when we treat the cells with the inhibitors."

Because the drugs already are undergoing clinical trials and much is known about their action and safety, scientists have a significant head start in getting the possible treatment to patients, Cox said.

"We are very excited about the possibility that a drug class whose actions we have been working so hard to understand in cancer might soon be useful for this devastating 'orphan disease,'" she said. "Progeria is clearly an illness that would otherwise get no attention from pharmaceutical companies due to the tiny numbers of children afflicted."

The next step will be to test the enzyme inhibitors in mouse models of the disease which already have been made, Cox said. If those experiments succeed, then scientists could start clinical trials with patients.



Publication: Sept. 6 issue of the Proceedings of the National Academy of Sciences
On the web: University of North Carolina at Chapel Hill 

Advertise in this space for $10 per month. Contact us today.


Related Progeria News
Farnesyl Transferase Inhibitors in Hutchinson-Gilford progeria syndrome
Anti-cancer drugs might work in aging disease
Lamin research project provides clues about premature aging
Drug prevents cell abnormality leading to progeria
Farnesyltransferase inhibitors (FTIs) might be useful in Hutchinson-Gilford Progeria Syndrome

Subscribe to Progeria Newsletter

Enter your email address:


 Additional information about the news article
Support for UNC's work on FTIs has come largely from the National Cancer Institute.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)