RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
  Proteins
   WNT
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Proteins Channel

subscribe to Proteins newsletter
Latest Research : Biochemistry : Proteins

   EMAIL   |   PRINT
Exploring mechanics of chromatid cohesion

Jul 5, 2006 - 2:53:00 PM , Reviewed by: Priya Saxena
These findings shed light on the mechanics of chromatid cohesion, and will be useful for further elucidating the complex means by which chromatids remain together and then separate during mitosis.

 
[RxPG] Over the long course of life's history, the appearance of a new function in an organism may be accompanied by a new protein. But, more often, the work is done by an old one that adds a new role to its repertoire. Such proteins are likely to be found in a wide variety of organisms, reflecting their ancient lineage and continuing relevance. Proteins never act in isolation, of course; instead, they bind to one or more others to carry out their tasks. And so, if one member of a protein pair has taken on a new function, it's a good bet the other may have done so as well. In a new study, Vlad Seitan, Tom Strachan, and colleagues show that two proteins, whose interactions in yeast help chromosomes divide, have counterparts in a full range of other organisms, including humans. And true to prediction, the proteins don't just continue to play their old roles—in animals, they also appear to help guide multicellular development.

The focus of the study is a pair of yeast proteins, Scc2 and Scc4. Bound together, they load the protein complex cohesin onto chromosomes to link together sister chromatids, ensuring proper separation in mitosis. Scc2 has orthologs—proteins with similar structure sharing a common ancestor—in both fruit flies and humans, known respectively as Nipped-B and delangin. But, until very recently, orthologs of Scc4 have not been found outside of a few fungal species.

The authors set out to find binding partners for Nipped-B and delangin. Using Nipped-B as the bait, they snagged the protein product of the fly gene CG4203. The human counterpart of this protein, called KIAA0892, bound to delangin. Because both CG4203 and KIAA0892 are related to a nematode protein called MAU-2, the authors dubbed them fly and human MAU-2. Each of these was about the same size as Scc4 and, using specialized bioinformatics approaches, they confirmed that the sequences of all three were related. Thus, Scc2 is to Scc4 as Nipped-B is to fly MAU-2, and delangin is to human MAU-2.

Up to this point, the only demonstrated functional similarity between Scc4 and the MAU-2s was their ability to bind their respective partners. To test whether human MAU-2 had a similar role in linking sister chromatids, the authors used RNA interference to diminish MAU-2 expression. When the level of MAU-2 was low, less cohesin was loaded onto the chromosomes, and sister chromatids prematurely separated, just as in yeast.

The nematode version of MAU-2 was originally identified as having a role in guiding cell movements and growth of axons during development. Did it also play a part in chromatid cohesion in the worm? Once again, RNA interference showed it did. Finally, if MAU-2 has a developmental role in the worm, what about in other organisms? When the authors used antisense to reduce MAU-2 in the frog, early development was delayed and the embryo displayed multiple defects. Reduction of frog delangin caused similar defects, indicating the two likely pair in this organism as well.

These findings shed light on the mechanics of chromatid cohesion, and will be useful for further elucidating the complex means by which chromatids remain together and then separate during mitosis. They also indicate that both subunits take part in shaping development. How they do so is not yet clear, but the role of the pair in controlling chromosome structure suggests they may help modify chromatin outside of the events of mitosis. Further study of this activity will likely help illuminate the pathologic mechanism of a rare human developmental disorder, Cornelia de Lange syndrome, which can be caused by a mutation in the delangin gene and which is characterized by low birth weight, slow growth, and multiple physical abnormalities.



Publication: Robinson R (2006) Ancient Protein Partners Take on Additional Roles in Multicellular Animals. PLoS Biol 4(8): e266
On the web: Read Research Article at PLoS Biology 

Advertise in this space for $10 per month. Contact us today.


Related Proteins News


Subscribe to Proteins Newsletter

Enter your email address:


 Additional information about the news article
Written by Richard Robinson

DOI: 10.1371/journal.pbio.0040266

Published: July 4, 2006

Copyright: © 2006 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)