RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Radiology Channel

subscribe to Radiology newsletter
Latest Research : Radiology

   EMAIL   |   PRINT
Characteristic Cardiac Scar Pattern Predicts Risk Of Fatal Arrhythmias

Nov 2, 2005 - 3:51:00 AM
“Our MRI technique has significant advantages over existing methods because it avoids the risks of infection that come with surgery, it is noninvasive, there are no catheters, and it is relatively easy to perform, taking only 45 minutes,” says study co-author and cardiologist João Lima, M.D., an associate professor of medicine and radiology at Hopkins.

 
[RxPG] Using magnetic resonance imaging (MRI) scans of the heart wall, researchers at Johns Hopkins have found that people whose muscle wall thickness contained more than 25 percent scar tissue were approximately nine times more likely to test positive for a fast and dangerous heart rhythm known as ventricular arrhythmia.

Patients at risk of such arrhythmias often have a heart defibrillator implanted, a small device that delivers an electrical shock to restore their cardiac rhythm in case the heart beats too rapidly to pump enough blood to the rest of their body. Statistics from the United States Centers for Disease Control and Prevention estimate that each year more than 400,000 Americans suffer a sudden cardiac death, at least 30 percent of which are due to arrhythmia.

“If further tests confirm that MRI measurements of scar tissue accurately predict the risk of arrhythmia-related sudden death, these could become the gold standard for screening who really needs or does not need a defibrillator,” says the study’s senior author, electrophysiologist Henry Halperin, M.D., a professor of medicine, radiology and biomedical engineering at The Johns Hopkins University School of Medicine and its Heart Institute. “While tests are widely available to screen patients with coronary artery disease for risk of sudden cardiac death, tests are not so effective for identifying the many who will die suddenly from arrhythmias.”

Indeed, while the U.S. National Center for Health Statistics estimates that more than 1 million Americans currently have a defibrillator, national studies published early this year have shown that only 5 percent of these devices ever fire to correct a heartbeat.

The latest Hopkins findings, which appear in today’s edition of the journal Circulation, are believed to be the first to search in the heart’s architecture – rather than its pumping function and electrical signaling – and so far the only study to analyze this architecture for clues about arrhythmias in patients with poor heart function but no arterial disease.

According to the researchers, defibrillators are prescribed when tests show abnormalities in the heart’s ejection fraction (ability to squeeze blood to the rest of the body) and/or its resistance to electrical impulses that try to stimulate an arrhythmia.

“Our MRI technique has significant advantages over existing methods because it avoids the risks of infection that come with surgery, it is noninvasive, there are no catheters, and it is relatively easy to perform, taking only 45 minutes,” says study co-author and cardiologist João Lima, M.D., an associate professor of medicine and radiology at Hopkins.

Lima notes that a patient with an ejection fraction of 60 percent has normal pumping ability, but anything less than 30 percent for a period of nine months or longer is considered low and an immediate risk factor for arrhythmia. He adds that if a patient has an ejection fraction that is slightly above 30 percent, then an electrophysiology test is used to determine if a patient requires a defibrillator. In this test, a thin catheter is inserted into the heart to try to induce an arrhythmia, something that will fail if the heart is healthy and not at risk. However, if it happens once, it is known to be two to four times more likely to happen again, he says.

Twenty-six patients from the Baltimore area participated in the study, which took place from July 2003 to February 2005. Participants were men and women, with an average age of 53, referred by community physicians to Hopkins for cardiac assessment. None had previous signs of coronary artery disease, another leading cause of sudden cardiac death, yet were experiencing other symptoms of heart disease, such as shortness of breath, instant fatigue and the inability to walk up stairs.

As part of a baseline MRI, the researchers used a technique developed at Hopkins to map and gauge the precise amount and distribution of scar tissue in the heart’s muscle wall. The amount of scar tissue was measured as a percentage of the thickness of the muscle wall, which is on average about 1 centimeter. Composed of dense, fibrous tissue, with little to no blood supply, scar tissue was clearly visible on the image, the researchers say. After MRI, each patient underwent a standard electrophysiological assessment with a catheter.

Statistical analysis showed that the five patients who tested positive had the characteristic scar pattern, ranging from 26 percent to 75 percent scar tissue, with MRI. While MRI did not explain why the scar tissue forms, such scar patterns have been previously noted on autopsy studies of patients with heart disease. The researchers believe that previous inflammation, injury or excess stress on the heart wall may lead to this fibrosis and scar formation.

“Our study is yet another example of the potential applications of cardiac MRI in the prevention and treatment of cardiovascular disease,” says the study’s lead author, Saman Nazarian, M.D., a cardiac electrophysiology, clinical and research fellow at Hopkins. “Cardiac MRI is already useful for assessing the structure and function of the heart and the extent of structural changes due to coronary artery disease. MRI can also help identify patients in need of aggressive medical therapy and can help in the planning of invasive heart surgery or identification of the best candidates for bypass surgery.”

Nazarian points out that these results also offer promise that cardiac MRI might prove useful in screening people at moderate risk of sudden cardiac death from arrhythmias – those without significant coronary artery disease and ejection fractions between 30 percent and 50 percent.

Another therapeutic implication, he says, is that identifying the telltale scar pattern could potentially improve existing procedures to ablate, or burn off, regions of the heart muscle that trigger arrhythmia.



Publication: Circulation Journal
On the web: www.hopkinsmedicine.org 

Advertise in this space for $10 per month. Contact us today.


Related Radiology News
First breast PET/CT scanner to visualize suspected cancerous lesions in 3-D.
Drug eluting stents may save limbs
Combining patient photos with imaging improves diagnosis
Ultrasound Imaging Improved by New Computer Model
Computer model improves ultrasound image
Indian American develops tool to image tumours
Injectable Microfoam for Varicose Veins safe in Phase II trial
Newer Nonionic Contrast Agents Safe for Children
Electromagnetic breast imaging techniques offer high contrast and ability to distinguish between healthy breast tissue and abnormal tissue
Percutaneous radiofrequency ablation of liver tumors prove safe and effective

Subscribe to Radiology Newsletter

Enter your email address:


 Additional information about the news article
Funding for this study was provided by the Donald W. Reynolds Foundation and the National Institutes of Health. Halperin is a paid consultant to defibrillator manufacturer Medtronic, and co-investigator Ronald Berger, M.D., Ph.D., is a paid consultant to Guidant Corp., another device manufacturer. Neither of these companies provided funding for the study and the terms of the physicians’ arrangements are managed by The Johns Hopkins University in accordance with its conflict of interest policies.

Other researchers involved in the study were David Bluemke, M.D., Ph.D.; Albert Lardo, Ph.D.; Menekhem Zviman, Ph.D.; Stanley Watkins, M.D., M.P.H.; Timm Dickfield, M.D., Ph.D.; Glenn Meininger, M.D.; Ariel Roguin, M.D., Ph. D.; Hugh Calkins, M.D.; Gordon Tomaselli, M.D.; Robert Weiss, M.D.; and Ronald Berger, M.D., Ph.D.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)