RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT

A leap forward in the quest to develop an artificial pancreas


Nov 12, 2012 - 5:00:00 AM

 

A diabetes specialist and Artificial Intelligence expert have collaborated to test the prototype of an artificial pancreas. Should a planned clinical study and clinical trial support the excellent 'simulated' results obtained so far, this breakthrough could one day change the lives of millions of people.

People with type 1 diabetes have insufficient levels of insulin producing cells in their pancreas, or none at all, as a result of an autoimmune attack that is not currently preventable. They must inject or infuse insulin several times a day to control their blood sugar levels. This is a very crude substitute for what the body does moment-by-moment when it senses blood sugar and automatically releases the right amount of insulin to control it. Insulin pumps help with management to some extent, but there is much guesswork involved, as insulin values must be entered manually.

High blood sugars cause damage to tissues and organs, and over a lifetime can lead to very serious complications such as kidney failure and blindness.

As a result, research groups around the world are in a race to develop technologies or techniques that will match the body's incredibly sophisticated use of insulin to control blood sugar levels. JDRF, the leading global organisation focused on type 1 diabetes research, has sought to coordinate and accelerate these efforts through the JDRF Artificial Pancreas Project.

Associate Professor Jenny Gunton from Sydney's Garvan Institute of Medical Research and Dr Nigel Greenwood, an Honorary Senior Fellow at the University of Queensland, received an Innovative Grant from JDRF a year ago to carry out initial tests on the prototype already developed by Dr Greenwood.

Dr Greenwood is the founder of the technology company NeuroTech Research Pty Ltd, for which he developed machine intelligence software called 'Neuromathix'. With funding from the directors of his company, as well as some funding from the Queensland government, he built prototypes in 2009/10 of Neuromathix artificial pancreas software.

Greenwood is an applied mathematician with a background in developing machine intelligence software for military aerospace projects and industrial robotics. Such software analyses data, forms 'hypotheses' or possibilities, tests those hypotheses and acts on them, but interacts with people differently from the usual way that has come to be associated with the phrase 'Artificial Intelligence'.

The JDRF-funded project used two virtual or 'simulated' patients, generated by a 'black box' simulator containing the best models of diabetes from the literature, plus typical parameter values for diabetes. These virtual patients' meal data and insulin data were obtained from actual patients with diabetes. This was fed into the simulator, which then generated their blood glucose levels and other medical data as if they were real people.




Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)