Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT

Bird flu mutation study offers vaccine clue


Apr 8, 2013 - 4:00:00 AM

 

Scientists have described small genetic changes that enable the H5N1 bird flu virus to replicate more easily in the noses of mammals.

So far there have only been isolated cases of bird flu in humans, and no widespread transmission as the H5N1 virus can't replicate efficiently in the nose. The new study, using weakened viruses in the lab, supports the conclusions of controversial research published in 2012 which demonstrated that just a few genetic mutations could enable bird flu to spread between ferrets, which are used to model flu infection in humans.

Researchers say the new findings could help to develop more effective vaccines against new strains of bird flu that can spread between humans.

Knowing why bird flu struggles to replicate in the nose and understanding the genetic mutations that would enable it to happen are vital for monitoring viruses circulating in birds and preparing for an outbreak in humans, said Professor Wendy Barclay, from the Department of Medicine at Imperial College London, who led the study.

The studies published last year pointed to a mechanism that restricts replication of H5N1 viruses in the nose. We've engineered a different mutation with the same effect into one of the virus proteins and achieved a similar outcome. This suggests that there is a common mechanism by which bird flu could evolve to spread between humans, but that a number of different specific mutations might mediate that.

Bird flu only rarely infects humans because the human nose has different receptors to those of birds and is also more acidic. The Imperial team studied mutations in the gene for haemagglutinin, a protein on the surface of the virus that enables it to get into host cells. They carried out their experiments in a laboratory strain of flu with the same proteins on its surface as bird flu, but engineered so that it cannot cause serious illness.

The research found that mutations in the H5 haemagglutinin enabled the protein to tolerate higher levels of acidity. Viruses with these mutations and others that enabled them to bind to different receptors were able to replicate more efficiently in ferrets and spread from one animal to another.

The results have important implications for designing vaccines against potential pandemic strains of bird flu. Live attenuated flu vaccines (LAIV) might be used in a pandemic situation because it is possible to manufacture many more doses of this type of vaccine than of the killed virus vaccines used to protect against seasonal flu. LAIV are based on weakened viruses that don't cause illness, but they still have to replicate in order to elicit a strong immune response. Viruses with modified haemagglutinin proteins induced strong antibody responses in ferrets in this study, suggesting that vaccines with similar modifications might prove more effective than those tested previously.

We can't predict how bird flu viruses will evolve in the wild, but the more we understand about the kinds of mutations that will enable them to transmit between humans, the better we can prepare for a possible pandemic, said Professor Barclay.

The research was funded by the Medical Research Council and the Wellcome Trust and published in the


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)