Cutting the cord to determine babies' health risk from toxic exposure
Dec 3, 2008 - 5:00:00 AM
|
|
Modern tools in mass spectrometry and bioinformatics have enabled us to obtain a first view of proteins contained in fetal cord blood serum and to single out among these more than a dozen interesting ones whose concentrations change as a function of chemical exposure. These biomarkers of exposure and early effect are the gold of protein mining, said Halden, who is also an associate professor in the Ira A. Fulton School of Engineering.
|
By Arizona State University,
[RxPG]
Despite the well-known dangers of first- and secondhand smoke, an estimated ten percent of pregnant women in the U.S. are smokers. Exposure of a developing baby to harmful cigarette byproducts from mothers who smoke affects an estimated 420,000 newborns each year and poses a significant health care burden.
Now, in the first study of its kind, a team of researchers has completed a global assessment of newborns' umbilical cord blood to better understand the fetal health risks from smoking mothers. The research was led by Johns Hopkins University and included Rolf Halden, a researcher from the Biodesign Institute at Arizona State University.
Cigarette smoking is a massive onslaught on human physiology, said Halden, who works in the institute's Center for Environmental Biotechnology. Cigarette smoke is known to contain more than 4,000 chemicals, potentially affecting the health of a newborn baby on multiple levels, including low birth weight, premature delivery and small size for gestational age. The exact cause of these health effects continues to be the subject of investigation.
Unfortunately, maternal cigarette smoking puts babies at risk of adverse birth outcomes and increases susceptibility to other diseases later in life, said Halden.
The research team's goal was to provide the first assessment of proteins detectable in infant blood and to identify possible molecular predictors, or biomarkers, of fetal health risks.
The emergence of improved analytical tools allowed the researchers to address newborn health risks and explore the environmental effects of a well-known toxin in a level of detail not previously available. These tools include high-speed DNA sequencing, a powerful instrumental analysis called proteomic mass spectrometry to enhance the detection of proteins in complex samples, and bioinformatics, or the raw computing power to perform massive data crunching to tease out and identify biomarkers.
In doing so, the team described over 200 serum proteins contained in umbilical cord blood, the vital link between mother and developing baby that shares between the pair both essential nutrients as well as unwanted toxins absorbed by the mother.
Modern tools in mass spectrometry and bioinformatics have enabled us to obtain a first view of proteins contained in fetal cord blood serum and to single out among these more than a dozen interesting ones whose concentrations change as a function of chemical exposure. These biomarkers of exposure and early effect are the gold of protein mining, said Halden, who is also an associate professor in the Ira A. Fulton School of Engineering.
Halden, who joined ASU's Biodesign Institute in 2008, initiated the study while at Hopkins along with lead author David R. Colquhoun, and colleagues Lynn R. Goldman, Frank R. Witter, Robert N. Cole, Marjan Gucek, Malini Mansharamani, and Benjamin J. Apelberg. The results were published in the early online edition of the journal
Advertise in this space for $10 per month.
Contact us today.
|
|
Related Latest Research News
|
Subscribe to Latest Research Newsletter
|
|
Feedback
|
For any corrections of factual information, to contact the editors or to send
any medical news or health news press releases, use
feedback form
|
Top of Page
|