RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Insulin sensitizer also serves as energy-conserving signal to the brain

Jul 10, 2007 - 4:00:00 AM
Blood levels of another fat hormone, leptin, are regulated inversely in relation to serum adiponectin levels, the researchers noted.

 
[RxPG] A fat-derived protein known for its effects on the liver and skeletal muscle might also serve as an energy-conserving signal to the brain during periods of starvation, suggests a new study in the July issue of Cell Metabolism, a publication of Cell Press. The substance, known as adiponectin, acts on the brain to boost appetite and slow energy expenditure in an effort to maintain adequate fat stores during lean times, the researchers report.

“Energy homeostasis may be mediated by both short-term regulators, such as gut hormones, and long-term regulators,” said Takashi Kadowaki of the University of Tokyo. “In this study, we identified, for the first time, a potential long-term regulator that allows energy to be stored efficiently, namely, adiponectin.” The findings offer critical insight into adiponectin’s influence over the central nervous system and suggest that selective inhibition of the chemical in the brain may represent a novel therapeutic strategy for obesity and obesity-linked diseases, he added.

White adipose tissue (WAT) is a major site of energy storage and plays an important role in energy balance, the researchers said. It is also recognized as an important endocrine organ that secretes a number of biologically active signaling proteins, called adipokines. Adiponectin, an adipokine secreted exclusively by WAT, is present at relatively high concentrations in the circulation and has been shown to increase the body’s response to insulin. Studies have also suggested that decreased circulating levels of adiponectin in obesity and type 2 diabetes may contribute to the insulin resistance that characterizes both conditions.

In addition to its peripheral actions on the liver and skeletal muscle, adiponectin has also been reported to have central actions, Kadowaki said. Recently, however, it was reported that adiponectin is undetectable in human cerebrospinal fluid and does not cross the blood-brain barrier, leaving some doubt about its physiological role in the central nervous system, he added.

The researchers now report evidence in mice that adiponectin receptors are present in the hypothalamic region of the brain and that some forms of the chemical enter the cerebrospinal fluid from the blood. Once in the brain, adiponectin enhances the activity of a metabolic enzyme called AMP-activated protein kinase (AMPK) to stimulate greater food consumption. Moreover, the researchers found that adiponectin decreased energy expenditure. They also showed that blood and spinal fluid adiponectin levels in the brain normally increase during fasting and decrease after refeeding, suggesting that adiponectin acts mainly during food shortages.

In adiponectin-deficient mice, AMPK activity in the brain slowed, causing the animals to eat less and expend more energy. That action, in turn, made the animals resistant to becoming obese even on a high-fat diet. Moreover, animals lacking adiponectin lost more fat after 12 hours of fasting than normal mice did.

Blood levels of another fat hormone, leptin, are regulated inversely in relation to serum adiponectin levels, the researchers noted.

“Thus, central adiponectin/leptin signals may represent the physiological pathway by which hypothalamic AMPK activity and food intake are stimulated during fasting and suppressed after refeeding,” they said. “In addition to this short-term regulation of food intake and energy expenditure by adiponectin and leptin, these two adipokines may also participate in the long-term regulation of energy homeostasis. The fundamental roles of leptin and adiponectin seem to be to preserve an adequate fat reserve: leptin acts as a satiety signal, and adiponectin acts as a starvation signal.”




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)