RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT

International space station plays host to innovative infectious disease research


Feb 18, 2013 - 5:00:00 AM

 

Performing sensitive biological experiments is always a delicate affair. Few researchers, however, contend with the challenges faced by Cheryl Nickerson, whose working laboratory aboard the International Space Station (ISS) is located hundreds of miles above the Earth, traveling at some 17,000 miles per hour.

Nickerson, a microbiologist at Arizona State University's Biodesign Institute, is using the ISS platform to pursue new research into the effects of microgravity on disease-causing organisms.

Nickerson presented her research findings and charted the course for future investigations aboard the ISS on February 18 at the 2013 annual meeting for the American Association for the Advancement of Science, held in Boston, Mass. Her talk, entitled Microgravity: A Novel Tool for Advances in Biomedical Research, is part of a special session devoted to ISS science.

One important focus of my research is to use the microgravity environment of spaceflight as an innovative biomedical research platform. We seek to unveil novel cellular and molecular mechanisms related to infectious disease progression that cannot be observed here on Earth, and to translate our findings to novel strategies for treatment and prevention.

During an earlier series of NASA space shuttle and ground-based experiments, Nickerson and her team made a startling discovery. Spaceflight culture increased the disease-causing potential (virulence) of the foodborne pathogen Salmonella, yet many of the genes known to be important for its virulence were not turned on and off as expected when this organism is grown on Earth. Understanding how this switching is regulated may be useful for designing targeted strategies to prevent infection.

For NASA, Nickerson's findings were revelatory, given their implications for the health of astronauts on extended spaceflight missions. Already faced with the potential for compromised immunity induced by the rigors of space travel, astronauts may have to further contend with the threat of disease-causing microbes with amped-up infectious abilities. A more thorough understanding of infectious processes and host responses under these conditions is therefore vital for the design of therapeutics and other methods of limiting vulnerability for those on space missions.

The story however, doesn't end there. Further research by Nickerson's team pointed to important implications for the understanding of health and disease on Earth. Her team, including NASA scientists, showed that one of the central factors affecting the behavior of pathogenic cells is the physical force produced by the movement of fluid over a bacterial cell's sensitive surface. This property, known as fluid shear, helps modulate a broad range of cell behaviors, provoking changes in cell morphology, virulence, and global alterations in gene expression, in pathogens like Salmonella.

There are conditions that are encountered by pathogens during the infection process in the human body that are relevant to conditions that these same organisms experience when cultured in spaceflight. By studying the effect of spaceflight on the disease-causing potential of major pathogens like Salmonella, we may be able to provide insight into infectious disease mechanisms that cannot be attained using traditional experimental approaches on Earth, where gravity can mask key cellular responses, says Nickerson




Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)