RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
K-State scientist receives grant from National Institutes of Health to research cataracts

Jul 14, 2009 - 4:00:00 AM
In microequilibrium dialysis, a mixture of two different types of proteins is put into one chamber, separated from another chamber by a filter that will only allow the passage of one type of protein. Over time, the protein concentrations in the chambers equalize, and if an interaction occurred, then the proteins should bind to one another.

 
[RxPG] Research at Kansas State University is investigating the molecular composition of cataracts in hopes of developing a nonsurgical method to prevent or reverse the eye disease.

Cataracts, a clouding of the eye lens, are the leading cause of blindness in the world, according to the National Institutes of Health. Currently, surgery to remove and replace the cloudy eye lens is the only recommended method for restoring sight.

Larry Takemoto, a university distinguished professor of biology at K-State, has received nearly $500,000 from the National Institutes of Health to study the changes of protein interactions in the lens of the eye, which are believed to trigger cataracts.

Presently, there is no known drug that can reverse or stop cataracts, Takemoto said. By understanding the nature of the protein interactions on a biochemical level, we hope it will be possible in future studies to screen various drugs for their ability to inhibit or reverse the abnormal processes that cause cataracts.

In a healthy eye, a delicate and balanced interaction of proteins is normal and allows the lens to retain its transparency and ability to focus light. However, Takemoto's prior research suggests that changes in these interactions result in fluctuations of protein concentration. A change in concentration cause proteins to clump together, forming the cataract, and thus decreasing lens transparency. He has been collaborating with Chris Sorensen, university distinguished professor of physics at K-State, regarding theoretical aspects of this interaction.

We think that the proteins have very specific interactions amongst themselves, and that cataracts result from changes in these interactions, leading to lens opacity, Takemoto said. My laboratory has developed a methodology to study these interactions and their possible changes during the cataractous formation.

Takemoto is using a technique known as microequilibrium dialysis to measure protein interactions in a normal eye versus a cataractous eye. This process is normally used to study the interaction of smaller organic compounds; however Takemoto's lab will be the first to use it to study the interactions of proteins.

In microequilibrium dialysis, a mixture of two different types of proteins is put into one chamber, separated from another chamber by a filter that will only allow the passage of one type of protein. Over time, the protein concentrations in the chambers equalize, and if an interaction occurred, then the proteins should bind to one another.

This technique allows us to both detect and quantitate possible changes in these interactions for the first time, under true equilibrium conditions, Takemoto said. This study will establish the presence of interactions and will determine whether these interactions are altered during cataractogenesis.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)