RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Liver hormone is a cause of insulin resistance

Nov 2, 2010 - 4:00:00 AM
In the development of insulin resistance, the researchers don't think SeP acts on its own. It is well known, they explain, that fat tissue is a main contributor to the development of insulin resistance by producing fat-derived hormones called adipokines. But they say they have preliminary evidence for a connection between SeP and adipokine production, which will be the subject of further investigation.

 
[RxPG] Researchers have identified a hormone produced and secreted by the liver as a previously unknown cause of insulin resistance. The findings, in the November issue of Cell Metabolism, a Cell Press publication, suggest a new target for the treatment of insulin resistance and type 2 diabetes, the researchers say.

The current study sheds light on a previously underexplored function of the liver; the liver participates in the pathogenesis of insulin resistance through hormone secretion, said Hirofumi Misu of Kanazawa University Graduate School of Medical Science in Japan.

The researchers had discovered earlier that genes encoding secretory proteins are abundantly expressed in the livers of people with type 2 diabetes. On the basis of those findings, Misu and colleagues began to suspect that, similar to the role of fat tissue, the liver might contribute to the development of type 2 diabetes and insulin resistance via secretory proteins they call hepatokines.

Now, the researchers report the results of comprehensive gene expression analyses, revealing that the liver expresses higher levels of the gene encoding selenoprotein P (SeP) in people with type 2 diabetes who are more insulin resistant. Blood levels of SeP are also increased in people with diabetes compared to healthy people.

Further studies in mice added support to the notion that the connection between SeP and insulin resistance is causal. When the researchers gave normal mice SeP, they became insulin resistant and their blood sugar levels rose. A treatment that blocked the activity of SeP in the livers of diabetic and obese mice improved their sensitivity to insulin and lowered blood sugar levels.

Misu said that SeP was known previously as a protein produced mainly in the liver, where it transports the essential trace element selenium from the liver to other parts of the body. But the protein's clinical significance and, more specifically, its role in glucose homeostasis weren't known.

In the development of insulin resistance, the researchers don't think SeP acts on its own. It is well known, they explain, that fat tissue is a main contributor to the development of insulin resistance by producing fat-derived hormones called adipokines. But they say they have preliminary evidence for a connection between SeP and adipokine production, which will be the subject of further investigation.

The new findings suggest that there may be other hormones derived from the liver with important and varied roles in the body, Misu and his colleague Toshinari Takamura add. Our study raises the possibility that the liver functions as an endocrine organ by producing a variety of hepatokines and that the dysregulation or impairment of hepatokine production might contribute to the development of various diseases.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)