RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Metabolic study in mice could lead to 'good cholesterol' boosters

Aug 7, 2007 - 4:00:00 AM
“Proprotein convertases are an unexpected new player in HDL-C metabolism,” Jin said. “By manipulating levels of the enzyme in both directions, we were able to reduce HDL-C to almost nothing or double it.” That wide range of effects suggests that it may be “theoretically possible to manipulate good cholesterol levels to whatever point you like.”

 
[RxPG] Researchers have identified a new player in the control of so-called “good” cholesterol that circulates in the bloodstream and reduces heart attack risk, according to a report in the August issue of Cell Metabolism, a publication of Cell Press. Should the metabolic pathway uncovered in mice operate similarly in humans, the new discovery could point the way to therapies that protect against heart disease by boosting concentrations of the beneficial high-density lipoprotein cholesterol (HDL-C).

“By and large, the medicines now available lower levels of the ‘bad’ low-density lipoprotein cholesterol [LDL-C],” said Weijun Jin of the University of Pennsylvania School of Medicine. “There is a great need for methods to raise good cholesterol levels. Our findings suggest there may be multiple places to interrupt the metabolism of HDL-C.”

LDL-C can build up in blood vessel walls, increasing the risk of heart disease or stroke. By contrast, HDL-C tends to carry cholesterol away from the arteries to the liver—a process known as reverse cholesterol transport—where it is broken down and then eliminated from the body.

Existing LDL-C-lowering drugs such as statins can reduce the risk of heart attack by 20 to 35 percent, Jin said. However, treatment methods that would simultaneously lower bad cholesterol and increase good cholesterol have the potential to work even better. Indeed, researchers believe that increasing HDL-C while lowering LDL-C might cut heart attack risk by as much as 70 percent, he explained.

In the current study, the researchers found that treatments that partially block the activity of liver enzymes called proprotein convertases decreased plasma HDL-C levels in mice. They showed that the metabolic effect of the proprotein convertases depended on yet another factor, an enzyme called endothelial lipase (EL), which breaks down HDL-C. Proprotein convertases normally reduce EL function, they reported. Thus, the loss of proprotein convertase activity leads to an increase in EL and a decline in HDL-C.

Likewise, they showed that increased activity of proprotein convertases in the liver gives a significant boost to the protective HDL-C.

“Proprotein convertases are an unexpected new player in HDL-C metabolism,” Jin said. “By manipulating levels of the enzyme in both directions, we were able to reduce HDL-C to almost nothing or double it.” That wide range of effects suggests that it may be “theoretically possible to manipulate good cholesterol levels to whatever point you like.”

He emphasized, however, that the new findings represent basic research in animals. Further investigation will examine to what extent the pathway is preserved in humans, Jin said. The authors will also look for chemicals capable of modifying the pathway, which could hold promise as new good-cholesterol-boosting drugs.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)