RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT

NIH funds research to identify Parkinson's biomarkers


Feb 14, 2013 - 5:00:00 AM

 

The National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health (NIH), awarded a three-year, $900,000 grant to the Center for Biomedical Imaging Statistics at Emory's Rollins School of Public Health. The grant will fund the center's biomarker research in Parkinson's disease to identify non-invasive imaging measures that can detect changes in brain function and biochemistry.

Led by F. DuBois Bowman, PhD, associate professor and director of the Center for Biomedical Imaging Statistics, the team is one of nine research groups funded by NINDS that supports efforts to develop new technologies and tools for biomarker discovery, and data and sharing across the Parkinson's community. The idea is to create a larger study pool to accurately identify biomarkers (changes in the body or brain that can be used to predict, diagnose) in Parkinson's disease.

Bowman's team will develop new statistical tools that identify multiple biomarkers in the brain by observing differences in neural activity or abnormal alterations in brain function and structure.

Our primary goal is to achieve a better prognosis for patients by identifying neuro-degeneration earlier, says Bowman. In doing this, we prompt the development of new treatments, accurately identify who is likely to progress to develop Parkinson's, and develop findings that can be used to set up future clinical trials. There are currently no proven biomarkers for this disease.

Parkinson's disease is a movement disorder that affects nearly 1 million people in the United States. The lack of biomarkers for Parkinson's disease has been a major challenge for developing better treatments. Classic signs of the disease include tremors, stiffness and changes in speech and gait. Inside the brain, there is a progressive loss of cells in a motor-controlled region called the substantia nigra and an accumulation of protein-filled structures called Lewy bodies.

According to Bowman, there are no diagnostic tests that confirm Parkinson's disease. Instead, physicians base Parkinson's diagnoses on a combination of medical history, symptoms, neurological and physical examinations, and response to certain medications. Bowman and his team will develop statistical algorithms that will filter through millions of different possible brain measurements to detect changes that indicate neuro-degeneration related to Parkinson's. This will help accurately distinguish groups that are more likely to develop Parkinson's, thus changing what is known about the disease, enabling diagnosis before the classic motor symptoms occur and potentially altering treatments.

The research project has two aims:

1. Imaging-based Biomarkers: Using imaging technology, the team will capture changes in brain activity, structure and pathology related to Parkinson's. A novel aspect of the research will be combining different types of imaging data as well as other biologic information to extract multidimensional Parkinson's disease biomarkers.




Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)