RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Researchers discover biochemical weakness of malaria parasite -- vaccine to be developed

Jun 7, 2011 - 4:00:00 AM

Ali Salanti and his colleagues will collaborate with the biotech companies ExpreS2ion Biotechnologies and CMC Biologics A/S to develop a method for mass production of the vaccine.


 
[RxPG] Every year, 10,000 pregnant women and up to 200,000 newborn babies are killed by the malaria parasite. Doctors all around the globe have for years been looking in vain for a medical protection, and now researchers from the University of Copenhagen have found the biochemically weakness of the lethal malaria parasite, and will now start developing a vaccine to combat pregnancy related malaria.

The malaria parasite travels via the spit of an infected mosquito to the liver of the new host, where it spreads to the red blood corpuscles and starts to reproduce itself.

Pregnant women and children below the age of five years are particularly vulnerable to malaria because of the parasite's survival mechanisms. The parasite has a protein hook designed to attach it to the placenta and this leads to amnesia of the mother who in worst case can die or deliver prematurely. This increases the maternal mortality - and infant mortality, explains Associate Professor Ali Salanti from the University of Copenhagen's Centre for Medical Parasitology who manages the project.

The body's immune system normally attacks any foreign body but since our spleen constantly filters our blood and removes ruined or deform blood cells, the body's natural defense does not need to check the blood. And the malaria parasite exploits this fact.

An infected red blood corpuscle is more stiff than in its normal state and this would usually trigger the spleen to destroy the cell and parasite, but the malaria parasite has an advanced arsenal of protein hooks. With these hooks the parasite attaches itself to the inner side of the blood vessel and even if our immune system succeeds in defeating one hook, the parasite has 60 different hooks, which again differ from one malaria parasite to another.

Researchers have for years been looking for a vaccine which can attack the malaria parasite's specific placenta hook. This is tricky not least due to the fact that the parasite's hooks are long proteins which are difficult to produce artificially in the lab when developing of a vaccine.

After intensive research efforts, the researchers have now succeeded in identifying a fragment of the placenta hook (VAR2CSA) which not only is crucial for the parasite's ability to attach itself to the placenta, but also is possible to produce artificially for a vaccine.

A vaccine must stimulate the immune system to quickly attack something foreign in the body. Therefore, it was a matter of finding the part of the placenta hook, which the parasite cannot manage without and which we could target a vaccine against, says Associate Professor Ali Salanti.

With a grant of 15 million DKK (approximately 3 million USD) from the Danish National Advanced Technology Foundation and close corporation with two Danish biotech companies, the researchers can now start developing the vaccine and take it through the first trials to test its safety.

Ali Salanti and his colleagues will collaborate with the biotech companies ExpreS2ion Biotechnologies and CMC Biologics A/S to develop a method for mass production of the vaccine.

Once this has fallen into place, the researchers can start up the clinical trials on animals and human beings. If the trials are successful the parasistologists from the University of Copenhagen and their partners will make a significant contribution in reaching the UN's Millennium Development goal number 4 and 5. These two goals encourage every country in the world to work on lowering global child mortality with two thirds and maternal mortality with three quarters.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)