RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Serica scientists win AOSSM Award for ACL tissue regeneration in preclinical study

Jul 13, 2007 - 4:00:00 AM
Dr. Altman founded Serica in 1998, after completing his undergraduate and graduate studies at Tufts University, where he ruptured his ACL playing varsity football. His ACL repair surgery was performed by Dr. Richmond. Following knee surgery, Dr. Altman experienced the debilitating side effects of ACL reconstruction. This experience inspired his doctoral work, during which time he developed the concept and technology that became the platform for the current Serica product portfolio under development.

 
[RxPG] MEDFORD, MA and CALGARY, CANADA, JULY13, 2007 -- Serica Technologies, Inc., a growth-stage medical device company developing silk-based biomaterial platforms for tissue regeneration, today announced that its scientists received the Cabaud Memorial Award from the American Orthopedic Society for Sports Medicine (AOSSM), for their pre-clinical research demonstrating the potential of Serica’s SeriACL™ Graft to regenerate or re-grow anterior cruciate ligament (ACL) tissue in the knee, in a large-animal model.

Results from the award-winning paper were highlighted in a podium presentation during the AOSSM annual meeting. In this study, 43 goats were implanted with the SeriACL Graft and followed over 3, 6 and 12 months; results demonstrated the safety of the device, with initial indications of efficacy in the animal model. The SeriACL Graft, a new biomaterial made from natural silk protein, is installed using a standard surgical procedure to repair a torn ACL and is designed to provide a strong yet temporary support structure that replaces the torn ACL and stabilizes the knee joint.

“This study provides the first evidence of sustainable ACL tissue engineering,” said Gregory H. Altman, PhD, President and CEO, Serica Technologies, and senior author of the paper. “Through advances in biomedical engineering, we now have a more thorough understanding of the body’s own capacity for ACL healing, if provided the correct impetus. We believe our proprietary technology can provide a long-term bioresorbable graft scaffold that anticipates the defect site’s biological and mechanical requirements for ACL regeneration. We are extremely pleased with the results of this study and are aggressively moving forward with our development program, including the initiation of a study with the SeriACL Graft in humans.”

Results from this study showed that all animals were weight bearing at 3, 6 and 12 months, with 95% returning to normal gait by 6 months; the majority of knees were clinically stable at all points. Range of motion assessment indicated the knees maintained a normal range flexion and extension at all points. By 12 months, the initial SeriACL graft structure was not evident, indicating the device’s ability to provide sufficient direction and space for substantial ligament ingrowth while being bioresorbed.

“Current ACL repair options – either an autograft or allograft – each have well-documented, debilitating side effects,” said Rebecca Horan, PhD, the study’s lead author and Serica’s Senior Director of Research and Development. “Our goal with the SeriACL™ Graft is to provide a ‘scaffold,’ or biomechanical support structure, implanted during a standard surgical procedure, which supports the development of functional ACL tissue, thereby avoiding the limitations and lengthy rehabilitation associated with existing options.”

The SeriACL Graft or the surgical procedure did not induce early signs of acute inflammation, swelling or initial scar formation in the goat model, as indicated by rapidly declining scores for pain and knee size.

“The primary focus of our work over the past ten years has been to solve the unmet clinical need in ACL repair, offering surgeons and patients a device that would create the correct environment within the knee to regenerate ACL tissue, while supporting the mechanical structure of the joint during the healing process. Our ultimate goal is for the SeriACL Graft to serve the patient over his or her lifetime,” Altman added. “Prior to our study, no one has shown successful 12 month ACL regeneration data in a large-animal model with an off-the-shelf product, due to the demanding mechanical and biological requirements of a functional ACL. We are delighted that the AOSSM has recognized this important work, which brought to bear the combined disciplines of mechanical, biomedical, chemical and textile engineering for the development of our SeriACL Graft.”

This study, Clinical, Mechanical and Histopathological Evaluation of a Bioengineered Long-Term Bioresorbable Silk Fibroin Graft in a One Year Goat Study for Development of a Functional Autologous Anterior Cruciate Ligament, was funded by a grant from the National Institutes of Health (NIH) and Serica Technologies, Inc. The very first source of funding which helped to initiate the broader research program began with a $15,000 First Time Investigator Grant from the AOSSM in 1999.

Since 1986, the Cabaud Memorial Award has been presented annually, by the American Orthopedic Society of Sports Medicine, for work that “best exemplifies clinically relevant hypothesis-driven basic science research.”

“This award symbolizes what can be accomplished with a strong collaboration between engineers, scientists and surgeons who share a vision to advance medical science and improve patient care,” said John C. Richmond, MD, Chair, Department of Orthopedics, New England Baptist Hospital, Boston, MA, and a co-author of the paper. “We are excited by the potential of this device in ACL repair.” An acknowledged expert in this area of medicine, Dr. Richmond has conducted more than 5,000 ACL and Rotator Cuff Tendon (RCT) reconstructive surgeries over the past 25 years.

Dr. Altman founded Serica in 1998, after completing his undergraduate and graduate studies at Tufts University, where he ruptured his ACL playing varsity football. His ACL repair surgery was performed by Dr. Richmond. Following knee surgery, Dr. Altman experienced the debilitating side effects of ACL reconstruction. This experience inspired his doctoral work, during which time he developed the concept and technology that became the platform for the current Serica product portfolio under development.

The ACL, one of the four major ligaments of the knee, is the second most commonly injured knee ligament, and is a very common injury among athletes. Female athletes are known to have a higher risk of injuring their ACL. Currently, 200,000 surgeries are performed each year in the U.S. to repair a torn or damaged ACL.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)