RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Smell experience during critical period alters brain

Dec 5, 2007 - 5:00:00 AM
During this critical period, the olfactory system is flexible enough to calibrate its genetic map to its local environment, says first author Silke Sachse, a former postdoc in the Vosshall lab who is now a group leader in optical imaging at the Max Planck Institute for Chemical Ecology in Jena, Germany. But once that window closes, the circuit is no longer plastic.

 
[RxPG] Unlike the circuitry of the visual system, that of the olfactory system was thought to be hardwired: Once the neurons had formed, no amount of sensory input could change their arrangement. Now researchers at Rockefeller University and their collaborators have upturned this scientific dogma by showing that there is a sensitive period during which the external environment can alter a circuit in the fly brain that detects carbon dioxide, a gas that alerts flies to food and mates. This research, to be published in the December 6 issue of Neuron, may suggest that this brain plasticity isn't limited to the carbon dioxide detection circuit. Rather, it may be a general feature of the olfactory system itself.

The circuit has a genetic plan, but that genetic plan can adjust to real world conditions, says Leslie Vosshall, head of the Laboratory of Neurogenetics and Behavior. This paper is the first compelling case that the olfactory system is plastic.

Using several imaging techniques, Vosshall and her colleagues traced the carbon dioxide circuit, a well-described pathway that consists of three different types of neurons, the axons and dendrites of which form an entangled ball called a glomerulus. The researchers exposed flies to elevated levels of carbon dioxide to see whether it would alter the shape of this circuit or how it functioned. The glomerulus's volume was already increased after two days of exposure (from birth) and kept on increasing for five days, at which point it stopped. The increase in this specific glomerulus could only be induced by elevated levels of carbon dioxide and was also reversible.

After those initial few days, however, the researchers saw a different story unfold. If they didn't expose the flies to carbon dioxide within the first five days, genetics locked in the glomerulus's size such that no matter how long the flies were exposed to the gas, the glomerulus's volume didn't increase. These findings suggest that the fly's external environment can rewire the carbon dioxide detection circuit only during a five-day window of development.

During this critical period, the olfactory system is flexible enough to calibrate its genetic map to its local environment, says first author Silke Sachse, a former postdoc in the Vosshall lab who is now a group leader in optical imaging at the Max Planck Institute for Chemical Ecology in Jena, Germany. But once that window closes, the circuit is no longer plastic.

To figure out the mechanism by which the glomerulus increases its volume, the Vosshall group imaged the three types of neurons that make up the glomerulus -- olfactory sensory neurons, projection neurons and interneurons -- to see whether their structure or function had changed. The olfactory sensory neurons, which report sensory information to glomeruli, did not show any sign of structural or functional changes. However, the projection neurons, which send information from the glomeruli to the brain, and the interneurons, which communicate with the two types of neurons as well as the glomeruli, showed significant functional changes. Usually the sensory neurons collect information and send it to the brain and it is the job of the brain to interpret what the information means, says Vosshall. For plasticity to be useful, it probably makes sense to delegate that job to the brain rather than to the external sensory neurons.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)