RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Sweet chemistry: Carbohydrate adhesion gives stainless steel implants beneficial new functions

Apr 27, 2011 - 4:00:00 AM

For the transplantation goals of the project, sophisticated carbohydrate (sugar) molecules needed to be attached to the stainless steel surface to bring about the necessary interaction with the body's immune system. Its inherent stainless characteristic makes stainless steel a difficult material to augment with new functions, particularly with the controlled and close-to-perfect coverage needed for biomedical implants. The Edmonton-based team found that by first coating the surface of the stainless steel with a very thin layer (60 atoms deep) of glass silica using a technique available at the National Institute for Nanotechnology, called Atomic Layer Deposition (ALD), they could overcome the inherent non-reactivity of the stainless steel. The silica provide a well-defined chemical handle through which the carbohydrate molecules, prepared in the Alberta Ingenuity Centre for Carbohydrate Science, could be attached. Once the stainless steel had been controlled, the researchers demonstrated that the carbohydrate molecules covered the stainless steel in a highly controlled way, and in the correct orientation to interact with the immune system.


 
[RxPG] A new chemical bonding process can add new functions to stainless steel and make it a more useful material for implanted biomedical devices. Developed by an interdisciplinary team at the University of Alberta and Canada's National Institute for Nanotechnology, this new process was developed to address some of the problems associated with the introduction of stainless steel into the human body.

Implanted biomedical devices, such as cardiac stents, are implanted in over 2 million people every year, with the majority made from stainless steel. Stainless steel has many benefits - strength, generally stability, and the ability to maintain the required shape long after it has been implanted. But, it can also cause severe problems, including blood clotting if implanted in an artery, or an allergenic response due to release of metal ions such as nickel ions.

The University of Alberta campus is home to a highly multidisciplinary group of researchers, the CIHR Team in for Glyconanotechnology in Transplantation, that is looking to develop new synthetic nanomaterials that modify the body's immune response before an organ transplant. The ultimate goal is to allow cross-blood type organ transplants, meaning that blood types would not necessarily need to be matched between donor and recipient when an organ becomes available for transplantation. Developing new nanomaterials that engage and interact with the body's immune system are an important step in the process. In order to overcome the complex range of requirements and issues, the project team drew on expertise from three major areas: surface science chemistry and engineering, carbohydrate chemistry, and immunology and medicine.

For the transplantation goals of the project, sophisticated carbohydrate (sugar) molecules needed to be attached to the stainless steel surface to bring about the necessary interaction with the body's immune system. Its inherent stainless characteristic makes stainless steel a difficult material to augment with new functions, particularly with the controlled and close-to-perfect coverage needed for biomedical implants. The Edmonton-based team found that by first coating the surface of the stainless steel with a very thin layer (60 atoms deep) of glass silica using a technique available at the National Institute for Nanotechnology, called Atomic Layer Deposition (ALD), they could overcome the inherent non-reactivity of the stainless steel. The silica provide a well-defined chemical handle through which the carbohydrate molecules, prepared in the Alberta Ingenuity Centre for Carbohydrate Science, could be attached. Once the stainless steel had been controlled, the researchers demonstrated that the carbohydrate molecules covered the stainless steel in a highly controlled way, and in the correct orientation to interact with the immune system.

We are immensely pleased with this progress. We have every expectation that this set of steps creating novel tools for immune system engagement will lead us closer to clinical application aimed at preparing patients for successful organ transplants. stated Dr. Lori West, Professor of Pediatrics, Surgery and Immunology, and Director of Heart Transplant Research at Univ. of Alberta.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)