RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT

Teaching the brain to speak again


Feb 16, 2013 - 5:00:00 AM

 

Cynthia Thompson, a world-renowned researcher on stroke and brain damage, will discuss her groundbreaking research on aphasia and the neurolinguistic systems it affects Feb. 16 at the annual meeting of the American Association for the Advancement of Science (AAAS). An estimated one million Americans suffer from aphasia, affecting their ability to understand and/or produce spoken and/or written language.

Thompson, Northwestern's Ralph and Jean Sundin Professor of Communication Sciences, will participate in a 10 a.m. media briefing on Tools for Regaining Speech in Room 103 of Boston's Hynes Convention Center. The Teaching the Brain to Speak Again: New Frontiers in Trauma and Stroke Recovery panel takes place in Room 304 from 3 to 4:30 p.m.

For three decades, Thompson has played a crucial role in demonstrating the brain's plasticity, or ability to change. Not long ago, the conventional wisdom was that people only could recover language within three months to a year after the onset of stroke, she says. Today we know that, with appropriate training, patients can make gains as much as 10 years or more after a stroke.

Thompson has probably contributed more findings on the effects of brain damage on language processing and the ways the brain and language recover from stroke than any other single researcher. Her particular interest is agrammatic aphasia, which impairs abstract knowledge of grammatical sentence structure and makes sentence production and understanding difficult.

Among the first researchers to use functional magnetic resonance imaging to study recovery from stroke, Thompson found that behavior treatment that focused on improving impaired language processing affects not only the ability to understand and produce language but also brain activity.

She found shifts in neural activity in both cerebral hemispheres associated with recovery, with the greatest recovery seen in undamaged brain regions within the language network engaged by healthy people, albeit regions recruited for various language activities.

It's a matter of 'use it or lose it,' Thompson says. The brain has the capacity to learn and relearn throughout life, and it is directly affected by the activities we engage in. Language training that focuses on principles of normal language processing stimulates the recovery of neural networks that support language.

Thompson will discuss research she will conduct as principal investigator of a $12 million National Institutes of Health Clinical Research Center award to study biomarkers of recovery in aphasia.

Working with investigators from a number of universities, Thompson will explore the role blood flow plays in language recovery in chronic stroke patients. In addition, she will conduct cutting-edge, exploratory research using eye tracking to understand how people compute language as they hear it in real time. Eye-tracking techniques have been found to discern subtle problems underlying language deficits in acquired aphasia.

In a landmark 2010 study, she and colleagues discovered two critical variables related to understanding brain damage recovery. They found that stroke not only results in cell death in certain regions of the brain but that it also decreases blood flow (perfusion) to living cells that are adjacent (and sometimes even distant) to the lesion.

Until that study, hypoperfusion (diminished blood flow) was thought only to be associated with acute stroke. Her team also found that greater hypoperfusion led to poorer recovery.


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)