RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
UR discovers new way to boost vaccines, seeks patent

Aug 4, 2010 - 4:00:00 AM
Thus, researchers theorized that any molecule that binds to and activates PPAR gamma would, in turn, improve B cell secretion of antibodies. Researchers tested both natural and synthetic PPAR gamma ligands and discovered that the synthetic molecules used to create anti-diabetic drugs such as Actos and Avandia stimulated human and mouse B cells to better produce antibodies.

 
[RxPG] As the medical community searches for better vaccines and ways to deliver them, a University of Rochester scientist believes he has discovered a new approach to boosting the body's response to vaccinations.

Richard P. Phipps, Ph.D., found that the same molecules used in drugs that treat diabetes also stimulate B cells in the immune system, pushing them to make antibodies for protection against invading microorganisms.

The University of Rochester Medical Center has applied for international patent protection for this discovery.

Phipps believes further research will show that low doses of insulin-sensitizing drugs might be useful as vaccine adjuvants, particularly for people with weakened immune systems who cannot produce a proper antibody response. This would include some infants, the elderly, and patients with chronic health problems that lower immunity.

Currently the only widely approved vaccine adjuvant in the United States is alum. A vaccine adjuvant is a substance added to a vaccine to improve the body's immune response. Various forms of aluminum salts have been used for 70 years. (Adjuvants are added to some vaccines but not all. For example, live viral vaccines given during childhood and seasonal flu vaccines do not contain adjuvants.)

The search is always on for new adjuvants and safe adjuvants, said Phipps, a Dean's Professor of Environmental Medicine and professor of Medicine, Oncology, Ophthalmology, Microbology and Immunology, Pediatrics and Pathology and Laboratory Medicine. We are excited that we've identified a potentially important new and effective adjuvant.

Phipps' discovery grew from years of NIH-funded research investigating a protein called PPAR gamma and its ligands, which are present inside B cells and are involved in inflammation and in regulating the properties of immune cells and cancer cells. The way B cells evolve, or differentiate, is central to the body's immune response.

A closer examination of the role of PPAR gamma in relation to B cell function showed that PPAR levels increase upon B cell activation, according to a study published in 2009 by Phipps' laboratory in the Journal of Immunology.

Thus, researchers theorized that any molecule that binds to and activates PPAR gamma would, in turn, improve B cell secretion of antibodies. Researchers tested both natural and synthetic PPAR gamma ligands and discovered that the synthetic molecules used to create anti-diabetic drugs such as Actos and Avandia stimulated human and mouse B cells to better produce antibodies.

The drawback, Phipps said, is the possibility that too much stimulation would cause the immune system to overreact, triggering autoimmune diseases such as rheumatoid arthritis or lupus. Additional research is needed to better understand this process.




Funding information and declaration of competing interests: US Public Health Service

Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)