RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT

Wayne State University researcher examines protein's role in diabetic retinopathy


Jun 7, 2012 - 4:00:00 AM

 

DETROIT - A Wayne State University researcher believes a protein that fails to reach the nucleus of retinal cells may play a role in causing eye disease in people with diabetes.

Renu A. Kowluru, Ph.D., professor of ophthalmology, anatomy/cell biology and endocrinology at Wayne State University and the Kresge Eye Institute, recently received a one-year, $110,000 Innovative Grant from the Juvenile Diabetes Research Foundation to help gain new insight into the development of diabetic retinopathy and identify targets for future therapeutic interventions.

Her hypothesis is that NF-E2-related factor 2 (Nrf2), a protein that regulates antioxidant response, fails to reach to the nucleus of cells in the retina to neutralize free radicals, which are volatile. As a result, Kowluru said, KEAP1 - the protein that serves as an anchor for Nrf2 and represses its activation - increases, damaging the mitochondria, the cells' power source. That damage, she believes, in turn accelerates the death of cells in tiny blood vessels (capillaries), ultimately resulting in the development of retinopathy.

Diabetes is a leading cause of acquired blindness in young adults. Almost 50 percent of diabetes patients have some form of retinopathy - not necessarily blindness - after nine years, and that figure increases to 95 percent after 20 years of the disease.

Basically it doesn't leave any diabetic patient, Kowluru said.

Titled Role of Nrf2-KEAP1 in Diabetic Retinopathy, her project will look at the oxidative stress, an imbalance between the production and utilization of free radicals, in an effort to determine how a disease state - diabetes in this case - causes that imbalance.

We have shown that in diabetes, mitochondria are damaged, and when they are damaged they initiate cell death, Kowluru said. We want to see what the role of Nrf2 is in initiating this signal.

Beginning in October, her team will genetically regulate Nrf2 to examine the temporal relationship between the failure of the protein to reach cells' nuclei and the signal sent by damaged mitochondria that triggers cell death. She hopes to determine if the former event precedes the latter, or if they occur at the same time.

Additionally, Kowluru will examine the point on the gene where Nrf2 and KEAP1 interact to determine whether diabetes induces epigenetic changes in Nrf2, impairing its binding with KEAP1.

Because epigenetic changes, which are functionally relevant modifications to the genome that do not involve a change in the DNA sequence, can be passed along to future generations, prevention becomes an even more important goal, she said. Drugs now in the clinical trial stage for other chronic diseases (e.g., cancer) may be able to prevent epigenetic changes in the retina.

Once we understand the problem, we can administer supplements and prevent the downstream pathway for retinopathy, Kowluru said.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)