XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
  Parkinson's
  Dementia
   Alzheimer's
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Alzheimer's Channel
subscribe to Alzheimer's newsletter

Latest Research : Aging : Dementia : Alzheimer's

   DISCUSS   |   EMAIL   |   PRINT
Enhanced mental and physical activity slows neurological decline
Jul 24, 2006, 18:54, Reviewed by: Dr. Priya Saxena

These data provide strong evidence that an environment rich in mental and physical stimulation slows the progression of Alzheimer-like brain pathology.

 
Researchers have uncovered the pathways behind the protection offered by environmental stimulation in Alzheimer's disease, further confirming that enhanced mental and physical activity slows neurological decline. The paper by Ambr�e et al., "Reduction of amyloid angiopathy and A-Beta plaque burden after enriched housing in TgCRND8 mice: involvement of multiple pathways," appears in the August issue of The American Journal of Pathology.

Alzheimer's disease, the leading cause of senile dementia, presents with cognitive and behavioral deficiencies resulting in part from accumulation of ?-amyloid (A-Beta) deposits within the brain (A-Beta plaques) and its blood vessels (amyloid angiopathy). Although previous studies have shown that increased mental and physical activity can slow the progression of the disease, how such deceleration occurs has been unclear until now.

Dr. Kathy Keyvani's group at University Hospital Muenster examined the effects of environmental stimulation on the brain pathology of TgCRND8 mice. These mice, which express a mutant form of A-Beta found in some Alzheimer's patients, develop Alzheimer-like features including A-Beta plaques and cognitive deficits. To study the effects of enrichment, mice were housed in either standard cages or enriched cages, similar to the standard but with access to a stimulus cage containing permanent fixtures (rope and gnawing wood) as well as removable items (tunnels, balls, ladders, ramps, and exercise wheels) that were changed on a rotating basis.

Following five months of standard versus enriched housing, mouse brains were examined for signs of disease. Mice housed in the enriched environment had fewer A-Beta plaques, smaller plaque size, and reduced amyloid angiopathy compared to mice housed in standard cages. Interestingly, there were no differences in the levels of soluble A-Beta peptide or the transcriptional/translational expression levels of its precursor protein (APP) or the processing of APP between the two groups. So how did environmental stimulation prevent disease?

To answer this question, Ambr�e et al. performed DNA microarray analysis to determine which genes were differentially regulated in mice housed in the enriched environment compared to standard cages. Enriched mice exhibited down-regulation of pro-inflammatory genes but up-regulation of genes related to anti-inflammatory processes, protein degradation and cholesterol binding. These results were confirmed by specifically analyzing gene expression for examples in each category. Together these data suggest that an enriched environment elicits protection via pathways that prevent A-Beta accumulation and enhance its clearance.

The authors speculate that the altered expression of inflammatory genes may shift the immune response from one that is neurotoxic to one that is phagocytic, i.e., able to clear unwanted debris, such as A-Beta. In accordance with this, a significant enhancement of microglial activity was found by Western blot and morphometric analyses of microglia, which often surround and infiltrate A-Beta plaques. In addition, activating cellular protein degradation pathways provides another means of removing excess A-Beta. Finally, changes in cholesterol homeostasis, elements of which have been shown to correlate with A-Beta deposition, may exert beneficial effects by preventing plaque formation in the first place.

These data provide strong evidence that an environment rich in mental and physical stimulation slows the progression of Alzheimer-like brain pathology. Further investigation of the pathways and individual elements involved in such protection may provide novel treatment strategies for Alzheimer's disease. Until that time, keep your running shoes and crossword puzzles handy.
 

- Ambr�e O, Leimer U, Herring A, G�rtz N, Sachser N, Heneka MT, Paulus W, Keyvani K. Reduction of amyloid angiopathy and Aβ plaque burden after enriched housing in TgCRND8 mice: involvement of multiple pathways. Am J Pathol 2006 169:544-552
 

ajp.amjpathol.org

 
Subscribe to Alzheimer's Newsletter
E-mail Address:

 

This work was supported by grants from Innovative Medical Research and German National Academic Foundation.

Work was directed by Dr. Kathy Keyvani of University Hospital Muenster and involved collaborators at University of Muenster.

The American Journal of Pathology, the official journal of the American Society for Investigative Pathology (ASIP), seeks to publish high-quality original papers on the cellular and molecular mechanisms of disease. The editors accept manuscripts which report important findings on disease pathogenesis or basic biological mechanisms that relate to disease, without preference for a specific method of analysis. High priority is given to studies on human disease and relevant experimental models using cellular, molecular, biological, animal, chemical and immunological approaches in conjunction with morphology.


Related Alzheimer's News

Hope remains for Alzheimer's sufferers
CATIE Study: Antipsychotics in Alzheimer's No Better Than Placebo
Mediterranean diet associated with a lower risk for Alzheimer�s disease
Omega-3 fatty acid supplements may slow cognitive decline
Microscopic brain damage detected in early Alzheimer's disease
Novel technique can identify early cellular damage in Alzheimer's disease
Cathepsin B - Part of protective mechanism against Alzheimer's
Boosting ubiquitin C-terminal hydrolase L1 (Uch-L1) restores lost memory
New research points toward mechanism of age-onset toxicity of Alzheimer's protein
Structure of calbindin-D28K Protein Involved in Preventing Alzheimer�s, Huntington�s Diseases Characterised


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us