XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
  Breast
  Skin
   Melanoma
  Blood
  Prostate
  Liver
  Colon
  Thyroid
  Endometrial
  Brain
  Therapy
  Risk Factors
  Esophageal
  Bladder
  Lung
  Rectal Cancer
  Pancreatic Cancer
  Bone Cancer
  Cervical Cancer
  Testicular Cancer
  Gastric Cancer
  Ovarian Cancer
  Nerve Tissue
  Renal Cell Carcinoma
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

National Academy of Sciences

Melanoma Channel
subscribe to Melanoma newsletter

Latest Research : Cancer : Skin : Melanoma

   DISCUSS   |   EMAIL   |   PRINT
Malignant melanoma cells reprogrammed !
Feb 28, 2006, 17:45, Reviewed by: Dr. Rashmi Yadav

The researchers also showed that the malignant melanoma cells lost their tumor-causing ability as they became reprogrammed by the embryonic microenvironment to assume a more normal melanocyte-like cell type.

 
Scientists at Northwestern University and the Stowers Institute for Medical Research have reprogrammed malignant melanoma cells to become normal melanocytes, or pigment cells, a development that may hold promise in treating of one of the deadliest forms of cancer.

A report describing the group's research was published in the Feb. 27 online edition of the Proceedings of the National Academy of Sciences that will appear in the March 7 issue of the journal.

The experiments were conducted as a collaboration involving the laboratories of Mary J. C. Hendrix, president and scientific director of the Children's Memorial Research Center, Northwestern University Feinberg School of Medicine, and Paul M. Kulesa, director of Imaging at the Stowers Institute for Medical Research in Kansas City, Mo.

Hendrix is professor of pediatrics at the Feinberg School and a member of the executive committees of The Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

The study demonstrated the ability of malignant melanoma cells to respond to embryonic environmental cues in a chick model -- in a manner similar to neural crest cells, the cell type from which melanocytes originate -- inducing malignant cells express genes associated with a normal melanocyte.

The researchers also showed that the malignant melanoma cells lost their tumor-causing ability as they became reprogrammed by the embryonic microenvironment to assume a more normal melanocyte-like cell type.

"Using this innovative approach, further investigation of the cellular and molecular interactions within the tumor cell embryonic chick microenviroment should allow us to identify and test potential candidate molecules to control and reprogram metastatic melanoma cells," Hendrix said.

Neural crest cells give rise to pigment cells as well as bone and cartilage, neurons and other cells of the nervous system. During embryonic development, neural crest cells display "invasive" behavior, similar to metastatic cancer cells, migrating from the neural tube (which becomes the brain and spinal cord) to form tissues along specific pathways.

Kulesa's laboratory transplanted adult human metastatic melanoma cells, isolated and characterized by the Hendrix laboratory group, into the neural tube of chick embryos.

The transplanted melanoma cells did not form tumors.

Rather, like neural crest cells, the melanoma cells invaded surrounding chick tissues in a programmed manner, distributing along the neural-crest-cell migratory pathways throughout the chick embryo.

The investigators found that a subpopulation of the invading melanoma cells produced markers indicative of skin cells and neurons that had not been present at the time of transplantation.

Taken together, results of this study suggest that human metastatic melanoma cells respond to and are influenced by the chick embryonic neural-crest-rich microenvironment, which may hold promise for the development of new therapeutic strategies, the researchers said.

"This idea was pioneered 30 years ago by scientists who thought that the complex signals within an embryonic field may reprogram an adult metastatic cancer cell introduced into such an environment and cause it to contribute in a positive way to an embryonic structure," Kulesa said.

"Today, we have advanced imaging and molecular techniques that allow us to pose the same questions within an intact chick embryo and directly study the molecular signals involved in the reprogramming. The ancestral relationship between melanoma and the neural crest provides a wonderful bridge between developmental and cancer biology," Kulesa said.

One of the hallmarks of aggressive cancer cells, including malignant melanoma, is their unspecified, plastic nature, which is similar to that of embryonic stem cells.

The Hendrix lab has shown that the unspecified or poorly differentiated cell type serves as an advantage to cancer cells by enhancing their ability to migrate, invade and metastasize virtually undetected by the immune system.

Also collaborating on this research were Jennifer C. Kasemeier and Jessica Teddy, Stowers Institute; and Naira V. Margaryan; Elisabeth A. Seftor; and Richard E. B. Seftor, Children's Memorial Research Center.
 

- The study appears in the Feb. 27 online edition of the Proceedings of the National Academy of Sciences
 

http://www.northwestern.edu/

 
Subscribe to Melanoma Newsletter
E-mail Address:

 



Related Melanoma News

Listening to the sound of skin cancer
Malignant melanoma cells secrete a potent embryonic growth factor
New mouse model technology in Melanoma vaccine tool-box
Malignant melanoma cells reprogrammed !
New option for patients with metastatic melanoma
Positive family history increases risk of multiple primary melanomas
Role of Slug Gene in Melanoma Metastasis Identified
Incidence Of Nonmelanoma Skin Cancer On The Rise Among Young Adults
Curcumin - Potent turmeric spice blocks growth of melanoma
MITF master regulator is the target of gene amplification in melanoma


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us