XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Cytology Channel
subscribe to Cytology newsletter

Latest Research : Cytology

   DISCUSS   |   EMAIL   |   PRINT
Cilia also contribute to cellular response to external signals
May 4, 2006, 23:13, Reviewed by: Dr. Priya Saxena

"This is another example of how basic science research can have big results. Studies on Chlamydomonas will help us understand the unique qualities of cilia that have led to their use in chemosensory pathways in humans."

 
By studying microscopic hairs called cilia on algae, researchers at UT Southwestern Medical Center have found that an internal structure that helps build cilia is also responsible for a cell's response to external signals.

Cilia perform many functions on human cells; they propel egg and sperm cells to make fertilization possible, line the nose to pick up odors, and purify the blood, among other tasks.

With such a range of abilities, cilia serve as both motors and "cellular antennae," said Dr. William Snell, a professor of cell biology at UT Southwestern and senior author of new research on cilia published in the May 5 issue of Cell.

Genetic defects in cilia can cause people to develop debilitating kidney disease or to be born with learning disabilities, extra fingers or toes, or the inability to smell.

But no one really knows how cilia work, or, in some parts of the body, what their function is.

"There are cilia all over within our brain, and we don't have a clue about what they're doing," Dr. Snell said.

He and his team use the microscopic green alga, Chlamydomonas reinhardtii, which has two individual cilia. This alga allows researchers to manipulate genes and study the resulting effects on cilia in a way that would be impossible in animals such as mice.

"Chlamy is one of the few model organisms in which it's possible to do these kinds of studies," Dr. Snell said.
Normally, cilia � also called flagella � are built and maintained by an internal bidirectional, escalator-like system that ferries molecules to and from the tips by a process called intraflagellar transport, or IFT.

The UT Southwestern researchers used a mutant temperature-sensitive strain of the alga that behaved normally at lower temperatures. At higher temperatures, however, the IFT process stopped, and its components disappeared from the cilia. The cilia themselves were still able to beat, or move back and forth, for about 40 minutes before they began to shorten.

The team focused on fertilization of the alga, a process that requires a cilium to bind to a molecule on a cilium from a cell of the opposite mating type. They found that when the external molecule binds to a cilium, it activates an enzyme that signals the start of a chain of chemical reactions.

Although the cilia could move without IFT and bind to the molecules of the cilia of the opposite type, those cells were unable to respond to the signaling molecules. The failure to activate the chain of chemical reactions indicated that IFT was necessary for this function.

Analysis showed that the cilia signaling process was similar to that found in human cells, such as those in the nose involved in the sense of smell and those in the developing nervous system that sculpt our brains.

Uncovering this series of reactions will make it possible to test, for instance, drugs that can affect cilia, in the hope of finding substances that would also be effective in higher animals, Dr. Snell said.

"This is another example of how basic science research can have big results," he said. "Studies on Chlamydomonas will help us understand the unique qualities of cilia that have led to their use in chemosensory pathways in humans."
 

- May 5 issue of Cell
 

utsouthwestern.edu

 
Subscribe to Cytology Newsletter
E-mail Address:

 

Other UT Southwestern researchers involved in the study were Dr. Qian Wang, lead author and postdoctoral researcher in cell biology, and Dr. Junmin Pan, assistant professor of cell biology.

The work was supported by the National Institutes of Health.


Related Cytology News

How cells adhere so firmly to blood vessel walls
New Insight into Cell Division
New method for the controlled initiation of membrane fusion
CPK3 and CPK6 function as ion channel regulators in guard cell signaling
Disrupted Intercellular Communication Causes a Disfiguring Birth Defect
Sharing Responsibility for Clathrin Coat Assembly
Understanding the process of AIF release following MOMP during apoptosis
Researchers discover new cell structures
Cilia also contribute to cellular response to external signals
A riboswitch might sense magnesium levels in the cell


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us