XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Dental Channel
subscribe to Dental newsletter

Latest Research : Dental

   DISCUSS   |   EMAIL   |   PRINT
Ultrasound may help regrow teeth
Jun 30, 2006, 02:28, Reviewed by: Dr. Shivani Arora

"After proving it worked, we looked at creating a smaller ultrasound carrier where we can take the patient out as a variable,"

 
Hockey players, rejoice! A team of University of Alberta researchers has created technology to regrow teeth--the first time scientists have been able to reform human dental tissue.

Using low-intensity pulsed ultrasound (LIPUS), Dr. Tarak El-Bialy from the Faculty of Medicine and Dentistry and Dr. Jie Chen and Dr. Ying Tsui from the Faculty of Engineering have created a miniaturized system-on-a-chip that offers a non-invasive and novel way to stimulate jaw growth and dental tissue healing.

"It's very exciting because we have shown the results and actually have something you can touch and feel that will impact the health of people in Canada and throughout the world," said Chen, who works out of the Department of Electrical and Computer Engineering and the National Institute for Nanotechnology.

The wireless design of the ultrasound transducer means the miniscule device will be able to fit comfortably inside a patient's mouth while packed in biocompatible materials. The unit will be easily mounted on an orthodontic or "braces" bracket or even a plastic removable crown. The team also designed an energy sensor that will ensure the LIPUS power is reaching the target area of the teeth roots within the bone. TEC Edmonton, the U of A's exclusive tech transfer service provider, filed the first patent recently in the U.S. Currently, the research team is finishing the system-on-a-chip and hopes to complete the miniaturized device by next year.

"If the root is broken, it can now be fixed," said El-Bialy. "And because we can regrow the teeth root, a patient could have his own tooth rather than foreign objects in his mouth."

The device is aimed at those experiencing dental root resorption, a common effect of mechanical or chemical injury to dental tissue caused by diseases and endocrine disturbances. Mechanical injury from wearing orthodontic braces causes progressive root resorption, limiting the duration that braces can be worn. This new device will work to counteract the destructive resorptive process while allowing for the continued wearing of corrective braces. With approximately five million people in North America presently wearing orthodontic braces, the market size for the device would be 1.4 million users.

In a true tale of interdisciplinary work, El-Bialy met Chen at the U of A's new staff orientation. After hearing about Chen's expertise in nanoscale circuit design and nano-biotechnology, El-Bialy explained his own research and asked if Chen might be able to help produce a tiny ultrasound device to fit in a patient's mouth. The two collaborated and eventually along with Tsui received a grant from NSERC's "Idea to Innovation," program to expand on their prototype.

Dr. El-Bialy first discovered new dental tissue was being formed after using ultrasound on rabbits. In one study, published in the American Journal of Orthodontics and Dentofacial Orthopedics, El Bialy used ultrasound on one rabbit incisor and left the other incisor alone. After seeing the surprising positive results, he moved onto humans and found similar results. He has also shown that LIPUS can improve jaw growth in cases with hemifacial microsomia, a congenital syndrome where one side of the child's jaw or face is underdeveloped compared to the other, normal, side. These patients usually undergo many surgeries to improve their facial appearance. This work on human patients was presented at the World Federation of Orthodontics in Paris, September 2005.

"After proving it worked, we looked at creating a smaller ultrasound carrier where we can take the patient out as a variable," said El-Bialy. "Before this, a patient has to hold the ultrasound for 20 minutes a day for a year and that is a lot to ask."

The researchers are currently working on turning their prototype into a market-ready model and expect the device to be ready for the public within next two years.
 

- University of Alberta
 

www.ualberta.ca

 
Subscribe to Dental Newsletter
E-mail Address:

 



Related Dental News

Common Antacids Could Help Keep Gingivitis at Bay
Tetracycline plus teeth equal gray smile
Periodontal bacteria may be linked to acute coronary syndrome (ACS)
Ultrasound may help regrow teeth
Effects of stress, depression and cortisol on periodontal disease
Roasted vegetables could cause dental erosion
Periodontal therapy may help diabetic patients improve sugar control
Archaea Identified As Possible Human Pathogen
Cimetidine Inhibits Gum Disease in Rabbits
Dentistry in vogue 9,000 years ago in Balochistan


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us