XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
  Diabetes
   NIDDM
   Insulin Resistance
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Diabetes Channel
subscribe to Diabetes newsletter

Latest Research : Endocrinology : Diabetes

   DISCUSS   |   EMAIL   |   PRINT
Activated TORC2 makes liver more sensitive to Insulin
Nov 11, 2005, 01:06, Reviewed by: Dr.

"We were quite surprised to find that activated TORC2 makes the liver more sensitive to insulin, allowing it to respond more effectively to rising glucose levels"

 
An unexpected twist to a discovery reported just two months ago may significantly improve our understanding about the molecular origins of diabetes.

Scientists at the Salk Institute for Biological Studies then reported their discovery of a key cellular switch that instructs the liver to produce more glucose when blood sugar levels run low. Their paper was published in Nature.

Now, in the November issue of Cell Metabolism, they report that the very same switch limits its own activity to prevent the amount of produced glucose from overshooting healthy levels.

"This crucial fine-tuning is missing in diabetic individuals," explains Marc Montminy, a professor in the institute's Clayton Foundation Laboratories for Peptide Biology. "When you measure glucose levels in diabetic patients in the morning or after they have been fasting, their glucose levels are very high because the body is unable to control the production of glucose," he adds.

Two hormones with opposite effects - insulin and glucagon - act together to maintain a steady level of glucose circulating in our bloodstream, to provide a constant and readily available energy supply for the cells in our body.

Right after a meal, when nutrient levels in the blood are high, the pancreas releases insulin, which tells muscle and liver cells to squirrel away glucose for later use. In addition, insulin stimulates the production of fat and shuts down the ability of the liver to produce glucose.

At night or between meals, however, when glucose supplies run low, the pancreas releases glucagon into the bloodstream, to signal the body to fire up the fat burner. But even during sleep, our brain relies solely on glucose for fuel. To keep the brain well supplied with energy, the liver actually manufactures glucose during sleep or when we are fasting.

In response to low blood sugar levels, the glucagon signal flips a switch that triggers glucose production in liver cells. This switch is a protein called TORC2 that, when activated by glucagon, turns on the expression of genes necessary to make glucose from scratch.

At the same time TORC2 sets the stage to be shut off quickly when glucose levels start rising. "We were quite surprised to find that activated TORC2 makes the liver more sensitive to insulin, allowing it to respond more effectively to rising glucose levels," says Salk research fellow and co-author Seung-Hoi Koo, who also is affiliated with the Sungkyunkwan University School of Medicine in Korea

TORC2 does so by increasing the amount of a protein called IRS2 (insulin receptor substrate 2) mainly in liver and pancreas cells. IRS2 acts as a molecular bridge between the insulin receptor and downstream targets in the insulin signaling pathway. With more IRS2 available, liver cells can react to minute amounts of insulin and stop churning out glucose.

Mice that lack IRS2 are severely diabetic since the insulin signal can't "get through". However, when the Salk scientists treated them with gene therapy that delivered the missing gene for IRS2, healthy glucose levels were restored within a week.

"Understanding the regulation of insulin sensitivity represents a major challenge in the field of diabetes," says co-author Gianluca Canettieri, formerly a research fellow at Salk, now at the University of Rome, "La Sapienzia", Italy. "I think this finding could have significant implications in human therapy," he adds.

Other co-authors of the paper are Rebecca Berdeaux, Jose Heredia, Susan Hedrick and Xinmin Zhang, all at the Salk Institute for Biological Studies.
 

- November issue of Cell Metabolism
 

www.salk.edu

 
Subscribe to Diabetes Newsletter
E-mail Address:

 

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Related Diabetes News

Diabetes is an independent predictor of acute organ failure and subsequent death
Insulin resistance in early teens may predict diabetes
Low-fat vegan diet rivals oral diabetes medications
Conjugated linoleic acids in dairy products targets diabetes
TrialNet - Can Type 1 diabetes be prevented?
Infections Link With diabetes
Netrins hold potential for treating diabetes
Coffee might reduce risk of type 2 diabetes
Race may be risk factor for insulin resistance
Impaired blood vessel responses seen in children of diabetics


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us