XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
  X Chromosome
  Genetic Disorders
  Cloning
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Genetics Channel
subscribe to Genetics newsletter

Latest Research : Genetics

   DISCUSS   |   EMAIL   |   PRINT
Human cells use complex system of transcription-factor combinations
Jun 19, 2006, 01:22, Reviewed by: Dr. Priya Saxena

“A cell’s surprising ability to mix and match so many different combinations of these factors to achieve a high degree of complexity and specificity in the expression of its genes is impossible for even the most experienced cell biologists to conceptualize. That’s why we have computers.”

 
Scientists eager to help develop a new generation of pharmaceuticals are studying cellular proteins called transcription factors, which bind to upstream sequences of genes to turn the expression of those genes on or off. Some pharmaceutical companies are also hoping to develop drugs that selectively block the binding of transcription factors as a way to short-circuit the harmful effects of diseases, and researchers at the University of California, San Diego on June 16 reported new findings that could aid that effort.

Bioengineering researchers at UCSD and two research institutes in Germany report in the June 16 issue of PLoS Computational Biology that transcription factors act not only in isolation, but also in pairs, trios, and combinations of up to 13 to regulate distinct sets of genes. The researchers, led by UCSD bioengineering professor Trey Ideker, reported a list with 363 combinations of 91 transcription factors that regulate a large proportion of genes in the yeast genome. The team used rigorous statistical tests to discover active combinations of transcription factors, as if a cell were mixing and matching parts of its regulatory-protein wardrobe to respond to different environmental conditions.

The researchers expect that human cells use a similar system of transcription-factor combinations, but on a larger scale.

“A cell’s surprising ability to mix and match so many different combinations of these factors to achieve a high degree of complexity and specificity in the expression of its genes is impossible for even the most experienced cell biologists to conceptualize,” said Andreas Beyer, a post-doctoral fellow at the UCSD Jacobs School of Engineering’s Department of Bioengineering. “That’s why we have computers.”

The researchers combined the results of their laboratory with other large-scale measurements of transcription factor-gene binding, such as those reported earlier by MIT biology professor Richard A. Young and his collaborators.

Ideker’s team was able to identify new transcription factor binding patterns by borrowing a concept from computer science. The team considered the binding of one transcription factor to one gene as analogous to one “hop” of a data packet from one Internet router to another.

In the case of gene regulation, Ideker’s team identified “2hop” relationships by first focusing on single transcription factor-gene associations, plus other experimental evidence that indicates that that gene regulates a second gene.

To enlarge the scope of the model further, Ideker’s group also incorporated other previously discovered transcription-factor interactions and related genetic results. They relied on a total of eight types of direct and indirect evidence to create a model. That model predicts 980 as-yet-undiscovered transcription factor-gene binding interactions.

“This ‘systems biology’ approach, using so many different lines of evidence, has given us a much more revealing and detailed picture of how cells orchestrate gene regulation to cope with different environments,” said Ideker. “We’re far from understanding the full picture of gene regulation in a cell, but this new information should give scientists who are interested in blocking transcription factors a powerful new tool to narrow their search to the most promising candidates.”
 

- Andreas Beyer, Christopher Workman, Jens Hollunder, Dörte Radke, Ulrich Möller, Thomas Wilhelm, Trey Ideker, "Integrated Assessment and Prediction of Transcription Factor Binding" (2006). PLoS Computational Biology. 2(6): e70.
 

Read the research article

 
Subscribe to Genetics Newsletter
E-mail Address:

 

Other researchers involved in the project include: Christopher Workman, UCSD Jacobs School of Engineering’s Department of Bioengineering (now at The Technical University of Denmark); Jens Hollunder and Thomas Wilhelm, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany; Dörte Radke and Ulrich Möller, Leibniz Institute for Natural Products Research and Infection Biology, Hans Knöll Institute, Jena, Germany.

Related Genetics News

New research into csd genes could help designing strategies for breeding honey bees
Williams Syndrome, the brain and music
Genetic mutation identified as cause of cranio-lenticulo-sutural dysplasia
Chance Fluctuations in mRNA Output in Mammalian Cells
Transposon Silencing Keeps Jumping Genes in Their Place
GATA2 - predicting susceptibility to coronary artery disease
Exploring genetics of congenital malformations
Genome insertions and deletions (INDELs) provide expanded view of human genetic differences
BRIT1 gene identified as protector of DNA
FDA Approves Idursulfase As First Treatment for Hunter Syndrome


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us