XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
  Cataract
  Cornea
  Retina
   ARMD
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate
Search

Last Updated: Nov 18, 2006 - 1:55:25 PM

Retina Channel
subscribe to Retina newsletter

Latest Research : Ophthalmology : Retina

   DISCUSS   |   EMAIL   |   PRINT
Antioxidants may slow retinal degeneration
Jul 20, 2006 - 8:22:00 PM, Reviewed by: Dr. Priya Saxena

"These experiments suggest that an optimized regimen of antioxidants may help to protect patients with retinitis pigmentosa."

 
Scientists at Johns Hopkins have successfully blocked the advance of retinal degeneration in mice with a form of retinitis pigmentosa (RP) by treating them with vitamin E, alpha-lipoic acid and other antioxidant chemicals.

"Much more work needs to be done to determine if what we did in mice will work in humans," said Peter Campochiaro, the Eccles Professor of Ophthalmology and Neuroscience at The Johns Hopkins University School of Medicine. "But these findings have helped to solve a mystery."

In patients with RP, rod photoreceptors die from a mutation, but it has not been known why cone photoreceptors die. After rods die, the level of oxygen in the retina goes up, and this work shows that it is the high oxygen that gradually kills the cones. Oxygen damage is also called "oxidative damage" and can be reduced by antioxidants. So for the first time, scientists have a treatment target in patients with RP, added Campochiaro. His team's findings appeared in the July online edition of the Proceedings of the National Academy of Sciences.

Retinas in all mammals, from mouse to man, are made up of light-sensitive cells known as cones and rods, named for their shapes, which convert light into nerve signals that are then transmitted to the brain via the optic nerve. Cones are needed to see colors and make vision possible in bright light, whereas the far more numerous rods permit sight in low light. The human retina contains approximately 125 million rod cells and six million cone cells. In diseases like RP and age-related macular degeneration (AMD), these cells die off and eventually lead to blindness (in the case of RP) or legal blindness (in the case of AMD).

In earlier studies exposing mice to pure oxygen, the Hopkins scientists found that high levels of oxygen in the retina killed both rods and cones, said Campochiaro. "This was the clue that the high oxygen levels that occur naturally in the retina after rods die was the suspect regarding cone cell death. To test this, we used antioxidants, which protect cells from oxygen damage, and since they allowed many more cones to survive, it proves that the suspect is guilty."

In this mouse model of retinal degeneration, the rods have completely degenerated by the 18th day of age, and then the cones start to degenerate, with 85 percent of them dying off by the time the mice are 35 days old. Campochiaro and his team injected vitamin E, vitamin C, alpha-lipoic acid or an antioxidant similar to superoxide dismutase between the 18th and 35th day. In mice that received vitamin E or alpha-lipoic acid, 40 percent of the cones survived, about twice as many as in the control group or the groups treated with the other antioxidants, which had no identifiable effect.

"What's clear is the link between oxygen and photoreceptor damage, as well as the potential of antioxidant treatment," Campochiaro said. "These experiments suggest that an optimized regimen of antioxidants may help to protect patients with retinitis pigmentosa."

Campochiaro emphasized that even if found valuable, antioxidant treatment of RP, a group of inherited blinding diseases with complex genetic roots, would not cure the disease. But the salvaging of cones, which are concentrated in the retina's macula and are critical to central vision, could serve as a "maintenance therapy," he said. "That alone would be an enormous help."

RP affects only about 100,000 people in the United States. But the oxygen damage has also been implicated in other more pervasive eye diseases, like AMD and cataracts.

Antioxidants naturally occur in some fruits and vegetables, and are available as supplements, but Campochiaro said it remains unclear whether the amounts of antioxidants consumed in foods provided any benefit to people with these types of vision impairments.
 

- July online edition of the Proceedings of the National Academy of Sciences
 

www.hopkinsmedicine.org

 
Subscribe to Retina Newsletter
E-mail Address:

 

The funding for this study was provided by the Macula Vision Research Foundation, as well as gifts from Dr. and Mrs. William Lake, and Mrs. Susan Meyers. Co-authors of the study included Keiichi Komeima, Brian Rogers and Lili Lu, all of the Johns Hopkins School of Medicine.

Related Retina News
Deficiency of the Dicer enzyme in retinal cells linked to age-related macular degeneration
Quit smoking to save your eyes
Post Menopausal Hormones - reduces risk of macular degeneration
New Findings Indicate That Eyes Can Regenerate Damaged Retinas
Higher fish consumption have a reduced risk of advanced age-related macular degeneration
Genetics key factor in retinopathy of prematurity (ROP)
HTRA1 gene linked to aggressive 'wet' age-related macular degeneration
Master Proteins Dictate Retinal Differentiation Timetable
Yellow plant pigments lutein and zeaxanthin reduce risk of age-related macular degeneration
Objective way to diagnose diseases of colour perception


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us