XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
  Reproduction
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Evolution Channel
subscribe to Evolution newsletter

Special Topics : Evolution

   DISCUSS   |   EMAIL   |   PRINT
Modeling the Origin and Spread of Early Agriculture
Dec 29, 2005, 16:02, Reviewed by: Dr. Priya Saxena

Rather than �racing across the map of Europe,� the authors argue, the Neolithic transition took over 3,000 years, or 100 generations, reflecting the time children stay with their parents before moving on to greener pastures.

 
After the last major ice age some 10,000 years ago, things began to look up for early humans. Forbidding climes yielded to more hospitable weather patterns, and people began to settle down and domesticate plants and animals. Archeologist Gordon Childe, who in 1942 called the transition from hunting and gathering to agriculture the Neolithic Revolution, proposed that unchecked population growth triggered economic and social problems among Near Eastern populations and forced farmers and shepherds to search for new lands. In this demic diffusion model, dispersing populations introduced Europeans to the Neolithic lifestyle. Alternately, Europeans may have learned to farm by imitating Neolithic practitioners they encountered through trade or other interactions (the cultural diffusion model).

Childe's ideas of westward migration found support in a 1965 study that mapped the spatiotemporal pattern of a small sample of radiocarbon dates (determined from animal bones and other carbon remains) from Neolithic sites. A landmark study by Albert Ammerman and Luigi Cavalli-Sforza in 1971 used more data�radiocarbon dates from 53 early Neolithic sites�and used a population biology model to investigate Neolithic spread. Their �wave of advance� model proposed that population growth at the agricultural fringes coupled with local migrations would produce steady population expansions in all directions. They calculated an average rate of spread of about one kilometer per year.

But the controversy between the cultural and demic diffusion models still remains today. Now, over 30 years later, Ron Pinhasi and Joaquim Fort revisited the question along with Ammerman, using a substantially larger dataset with new locations�radiocarbon-dated bones and charcoal from 735 Neolithic sites in Europe, the Near East, and Asia�and reaffirm the wave-of-advance model. The authors combined mathematical and geospatial techniques to estimate the timing and likely center of agricultural origins, as well as the rate of spread. Their results support a model of demic diffusion and, for the first time, pinpoint the geographic origin of agriculture within the Fertile Crescent.

Pinhasi et al. calculated the correlation between the straight distance versus age of the 735 radiocarbon dates and the likely spread from 25 hypothetical centers of origin (based on location only) and ten probable centers (sites that included the oldest remains, as well as a center proposed in the 1971 study). The most southern point, Abu Madi in Egypt, had the highest correlation, though eight of the other probable centers had similar scores. However, charting the shortest paths (which take into account the barrier effect of the Mediterranean Sea), pointed to an origin in the north. Focusing on the centers that seemed most likely, Pinhasi et al. used both approaches (one based on straight paths, one based on shortest paths) to estimate the speed of agricultural spread, and came up with nearly the same figure: 0.7�1.1 kilometers per year versus 0.8�1.3 kilometers per year. An error range for this speed was estimated (which had not been done before), so the authors could also compare this observed rate with that predicted by a model.

While no cultural diffusion model is known so far that can explain the observed rate (calculated from the archeological evidence), a kilometer or so a year is consistent with a time-delayed demic diffusion model. (This model, which was proposed by Fort and co-workers in 1999, also agrees with data from other human and nonhuman population expansions, as well as with the observed speeds of virus infections.) While many genetic studies also support demic diffusion, they do not agree on the extent to which Near Eastern farmers contributed to the European gene pool. Assuming a linear advance, agricultural expansion began some 9,000�11,500 years ago, falling in line with a gradual wave of advance. Rather than �racing across the map of Europe,� the authors argue, the Neolithic transition took over 3,000 years, or 100 generations, reflecting the time children stay with their parents before moving on to greener pastures. This is precisely the time-delay effect that classical diffusion models are unable to capture, but that is accounted for in the model by Fort and co-workers. Finally, the authors incorporated radiocarbon data from 30 sites in Arabia to find the most likely birthplace of agriculture. Their shortest-path analysis points to northern Levant and northern Mesopotamia (whereas the straight-path, or classical, approach pointed to a southern origin).

The authors' approach did not address whether migrants traveled by land or by sea or whether farmers displaced foragers. But the pattern and processes of dispersal were likely complex, Pinhasi et al. conclude, with multiple paths and mechanisms fueling the western expansion of the Neolithic lifestyle. And with a newly bolstered wave-of-advance model and the approach outlined here, geneticists, anthropologists, and other researchers investigating the origin and spread of human populations have a more detailed roadmap to follow.
 

- (2005) Go West, Early Man: Modeling the Origin and Spread of Early Agriculture. PLoS Biol 3(12): e436
 

Read Research Article at PLoS Biology Website (Open Access)

 
Subscribe to Evolution Newsletter
E-mail Address:

 

Note for international readers: During the time of Westward expansion in the 19th century, American essayist Horace Greeley famously advocated Manifest Destiny by exhorting, �Go West, young man!� �Liza Gross

DOI: 10.1371/journal.pbio.0030436

Published: November 29, 2005

Copyright: � 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License


Related Evolution News

New approach will pinpoint genes linked to evolution of human brain
New genetic analysis forces re-draw of insect family tree
Giant insects might reign if only there was more oxygen in the air
Infection Status Drives Interspecies Mating Choices in Fruit Fly Females
Mother birds give a nutritional leg up to chicks with unattractive fathers
Mammals Evolve Faster on Islands!
A Bacterial Protein Puts a New Twist on DNA Transcription
Why Does Sex Exist?
Pseudogenes Research Reinforces Theory of Evolution
Non-human primates may be linchpin in evolution of language


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us