XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
  Reproduction
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 14th, 2006 - 17:51:48

Evolution Channel
subscribe to Evolution newsletter

Special Topics : Evolution

   DISCUSS   |   EMAIL   |   PRINT
New approach will pinpoint genes linked to evolution of human brain
Nov 14, 2006, 17:46, Reviewed by: Dr. Priya Saxena

"We share more than 95 percent of our genetic blueprint with chimps. What sets us apart from chimps are our brains: homo sapiens means 'the knowing man.'

 
Six million years ago, chimpanzees and humans diverged from a common ancestor and evolved into unique species. Now UCLA scientists have identified a new way to pinpoint the genes that separate us from our closest living relative � and make us uniquely human.

"We share more than 95 percent of our genetic blueprint with chimps," explained Dr. Daniel Geschwind, principal investigator and Gordon and Virginia MacDonald Distinguished Professor of Human Genetics at the David Geffen School of Medicine. "What sets us apart from chimps are our brains: homo sapiens means 'the knowing man.'

"During evolution, changes in some genes altered how the human brain functions," he added. "Our research has identified an entirely new way to identify those genes in the small portion of our DNA that differs from the chimpanzee's."

By evaluating the correlated activity of thousands of genes, the UCLA team identified not just individual genes, but entire networks of interconnected genes whose expression patterns within the brains of humans varied from those in the chimpanzee.

"Genes don't operate in isolation � each functions within a system of related genes," said first author Michael Oldham, UCLA genetics researcher. "If we examined each gene individually, it would be similar to reading every fifth word in a paragraph � you don't get to see how each word relates to the other. So instead we used a systems biology approach to study each gene within its context."

The scientists identified networks of genes that correspond to specific brain regions. When they compared these networks between humans and chimps, they found that the gene networks differed the most widely in the cerebral cortex -- the brain's most highly evolved region, which is three times larger in humans than chimps.

Secondly, the researchers discovered that many of the genes that play a central role in cerebral cortex networks in humans, but not in the chimpanzee, also show significant changes at the DNA level.

"When we see alterations in a gene network that correspond to functional changes in the genome, it implies that these differences are very meaningful," said Oldham. "This finding supports the theory that variations in the DNA sequence contributed to human evolution."

Relying on a new analytical approach developed by corresponding author Steve Horvath, UCLA associate professor of human genetics and biostatistics, the UCLA team used data from DNA microarrays � vast collections of tiny DNA spots -- to map the activity of virtually every gene in the genome simultaneously. By comparing gene activity in different areas of the brain, the team identified gene networks that correlated to specific brain regions. Then they compared the strength of these correlations between humans and chimps.

Many of the human-specific gene networks identified by the scientists related to learning, brain cell activity and energy metabolism.

"If you view the brain as the body's engine, our findings suggest that the human brain fires like a 12-cylinder engine, while the chimp brain works more like a 6-cylinder engine," explained Geschwind. "It's possible that our genes adapted to allow our brains to increase in size, operate at different speeds, metabolize energy faster and enhance connections between brain cells across different brain regions."
 

- The Proceedings of the National Academy of Sciences reports the study in its Nov. 13 online edition
 

www.ucla.edu

 
Subscribe to Evolution Newsletter
E-mail Address:

 

Future UCLA studies will focus on linking the expression of evolutionary genes to specific regions of the brain, such as those that regulate language, speech and other uniquely human abilities.

The study was supported by the James S. McDonnell Foundation, the National Institute of Neurological Disorders and Stroke, and the National Institute of Mental Health.


Related Evolution News

New approach will pinpoint genes linked to evolution of human brain
New genetic analysis forces re-draw of insect family tree
Giant insects might reign if only there was more oxygen in the air
Infection Status Drives Interspecies Mating Choices in Fruit Fly Females
Mother birds give a nutritional leg up to chicks with unattractive fathers
Mammals Evolve Faster on Islands!
A Bacterial Protein Puts a New Twist on DNA Transcription
Why Does Sex Exist?
Pseudogenes Research Reinforces Theory of Evolution
Non-human primates may be linchpin in evolution of language


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us