RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
  Stem Cell Research
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Stem Cell Research Channel

subscribe to Stem Cell Research newsletter
Latest Research : Embryology : Stem Cell Research

   EMAIL   |   PRINT
Clinical trial to test stem cell approach for children with brain injury

Dec 23, 2005 - 3:07:00 AM , Reviewed by: Rashmi Yadav
"This would be an absolutely novel treatment, the first ever with potential to repair a traumatically damaged brain."

 
[RxPG] A unique clinical trial will gauge the safety and potential of treating children suffering traumatic brain injury with stem cells derived from their own bone marrow starting early next year at The University of Texas Medical School at Houston and Memorial Hermann Children's Hospital.

The clinical trial is the first to apply stem cells to treat traumatic brain injury. It does not involve embryonic stem cells.

"There is no reparative treatment for traumatic brain injury," said principal investigator Charles Cox, M.D., The Children's Fund, Inc. Distinguished Professor in Pediatric Surgery and Trauma at the medical school. "All we can do now is try to prevent secondary damage by relieving pressure on the brain caused by the initial injury."

Unlike bone, muscle and other organs, the brain does not repair itself effectively. Traumatic brain injury victims can regain some function through rehabilitation. Studies show between 15 and 25 percent of children suffering severe traumatic brain injury die, and survivors of even moderate injury often are devastated for life.

Approved by the U.S. Food and Drug Administration and the university's Committee for the Protection of Human Subjects (CPHS), the clinical trial builds on laboratory and animal research indicating that bone-marrow derived stem cells can migrate to an injured area of the brain, differentiate into new neurons and support cells, and induce brain repair.

"This would be an absolutely novel treatment, the first ever with potential to repair a traumatically damaged brain," said James Baumgartner, M.D., associate professor of pediatric neurosurgery and co-principal investigator on the project.

As a Phase I clinical trial, the project's first emphasis is to establish the safety of the procedure, with a secondary goal of observing possible therapeutic effects.

Cox and Baumgartner have permission to recruit 10 head injury patients to the study between the ages of 5 and 14 who meet criteria set for enrollment. After initial treatment and evaluation, a pediatric surgeon will approach the injured child's parents to explain the trial and request permission to enroll the child in the study.

If permission is granted, bone marrow will be extracted from the child's hip and then processed to derive two types of progenitor stem cells: mesenchymal stem cells, which differentiate into bone, cartilage and fat cells, and research indicates can also differentiate into neurons; and hematopoietic stem cells, which form all the cells needed for blood.

Preclinical research indicates that the mesenchymal stem cells play the major role in producing new neurons and support cells.

The Center for Cell and Gene Therapy at Baylor College of Medicine will process the bone marrow into the stem cell preparation and return it to Memorial Hermann Children's Hospital, where it will be given intravenously to the injured child.

All of this will be accomplished within 48 hours of the injury, Cox said. The children will be carefully monitored throughout for possible side effects. They will be evaluated for brain function one month and six months after the procedure to see if it is improved compared with historical data on the brain function of children of similar age who suffered a similar injury.

Safety trials involve too few patients to draw broad conclusions about the effectiveness of treatment. But they can set the stage for larger-scale research.

"All the preclinical data suggest this is a safe procedure with substantial information suggesting a possible treatment effect," Cox said.

Because the children are receiving their own cells, an immunological response to the treatment is unlikely.

Even marginal improvement could mean a great deal to someone who suffers a brain injury. "It could be the difference between being able to recognize your loved ones and not being able to, or between doing things for yourself or having to rely on others. That would be a huge impact on families and on society," Cox said.

Trauma is far and away the main cause of death and disability among children, and the main reason children die from trauma is brain injury, Cox said.

The proposal was under review for a year. The U.S. Food and Drug Administration approved Cox's Investigational New Drug (IND) application in September. The UT-Houston CPHS, the university's institutional review board for research projects, approved the project in November and will continue to monitor it.

The project is funded by the Memorial Hermann Foundation, internal research funds from The Office of the President at The University of Texas Health Science Center at Houston, and the National Institute of Child Health and Development and the National Heart, Lung, and Blood Institute of the National Institutes of Health.



Publication: The trial is starting early next year at The University of Texas Medical School at Houston and Memorial Hermann Children's Hospital
On the web: www.uthouston.edu 

Advertise in this space for $10 per month. Contact us today.


Related Stem Cell Research News
Researchers construct erectile tissue in rabbits
Early stage sperm cells created in laboratory
Neural stem cells derived from human embryonic stem cells carry abnormal gene expression
Neurons grown from embryonic stem cells restore function in paralyzed rats
New stem-cell findings can help the body to cure itself
Putting avian transgenics on a par with transgenic mice
Harvard to Create Human Embryonic Stem Cell Lines
Stem Cell Study for Patients with Heart Attack Damage Seeks to Regenerate Heart Muscle
Stem cells - An alternative to skin grafting?
Bone morphogenetic protein 6 (BMP-6) factor stimulates cartilage growth from stem cells

Subscribe to Stem Cell Research Newsletter

Enter your email address:


 Additional information about the news article
Contact: Scott Merville
[email protected]
713-500-3042
University of Texas Health Science Center at Houston
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)