RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
  Stem Cell Research
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Stem Cell Research Channel

subscribe to Stem Cell Research newsletter
Latest Research : Embryology : Stem Cell Research

   EMAIL   |   PRINT
Method to produce symmetrical divisions of mouse brain stem cells derived from ES cells

Aug 19, 2005 - 6:52:00 PM
Their novel method creates an on/off switch for differentiation of tissue-specific stem cells: they can multiply without differentiation, and they can also become normal brain cells.

 
[RxPG] In all the hullabaloo about stem cells, nobody has noted their uncanny similarity to pizza dough. You can divide either into two or four or eight identical pieces, but that doesn’t determine what kind of cell or pizza you're going to make. But once you let a cell grow hundreds of nuclei, or you pile on the pepperoni, you’re on your way to making a skeletal muscle fiber or a pepperoni pizza. If you want a white blood cell or an all-veggie pie, you’re out of luck. The commitment to becoming a certain cell type is called differentiation.

Stem cells in living organisms can multiply without differentiating, preserved by molecular signals in special niche environments; without these signals in the petri dish, they differentiate. Pluripotent mouse embryonic stem (ES) cells, a special type of stem cell with the potential to develop into many different cell types, are an exception. Because they divide symmetrically, the scads of artificially grown ES cells are all the same. This leads researchers to wonder: what conditions in the body keep stem cells from differentiating, why are ES cells the only kinds that don’t differentiate in the petri dish, and how can scientists create undifferentiated tissue-specific stem cells in the lab?

In a new paper, Austin Smith and colleagues developed a method to produce symmetrical divisions of mouse brain stem cells derived from ES cells. Their novel method creates an on/off switch for differentiation of tissue-specific stem cells: they can multiply without differentiation, and they can also become normal brain cells. The authors also managed to cultivate the brain stem cells without re-creating the rarefied neurosphere, the highly specialized environment or microenvironment in which the body grows its own brain stem cells.

Many scientists believe that in the body, these microenvironments prevent stem cells from differentiating. Neurospheres, for example, contain some undifferentiated brain stem cells floating in a broth of differentiating cells. One feature of the neurosphere is that a very low percent of cells are brain stem cells. In fact, neurospheres have so few of these cells that scientists have a hard time even observing them! But by cultivating brain stem cells outside the neurosphere, the scientists showed that a complex microenvironment may not be necessary. To grow their stem cells, Smith et al. combined epidermal growth factor (EGF) and fibroblast growth factor (FGF), two small proteins that bind to stem cells and promote growth.

Previously, scientists had grown brain stem cells with FGF. Upon removing FGF, the cells failed to differentiate and become mature. The cells that Smith et al. grew, in contrast, became mature cells upon removal of the growth factor cocktail. They observed both neurons and astrocytes, the two types of cells into which the brain stem cells mature.

In the future, scientists may use this new technique to produce large quantities of the cells to study their basic properties and also to explore their value for modeling neurodegenerative afflictions, including Huntington disease, Parkinson disease, and Alzheimer disease. Additionally, these cells may clinch the debate of whether doctors will be able to use stem cells directly to repair brain damage.



Publication: (2005) Bake a Batch of Stem Cells? PLoS Biol 3(9): e307
On the web: PDF 

Advertise in this space for $10 per month. Contact us today.


Related Stem Cell Research News
Researchers construct erectile tissue in rabbits
Early stage sperm cells created in laboratory
Neural stem cells derived from human embryonic stem cells carry abnormal gene expression
Neurons grown from embryonic stem cells restore function in paralyzed rats
New stem-cell findings can help the body to cure itself
Putting avian transgenics on a par with transgenic mice
Harvard to Create Human Embryonic Stem Cell Lines
Stem Cell Study for Patients with Heart Attack Damage Seeks to Regenerate Heart Muscle
Stem cells - An alternative to skin grafting?
Bone morphogenetic protein 6 (BMP-6) factor stimulates cartilage growth from stem cells

Subscribe to Stem Cell Research Newsletter

Enter your email address:


 Additional information about the news article
DOI: 10.1371/journal.pbio.0030307

Published: August 16, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)